
Argonaut: Integrating Jason and Jena for context
aware computing based on OWL ontologies

Douglas Michaelsen da Silva1, Renata Vieira1

1 Universidade do Vale do Rio dos Sinos
Av. Unisinos, 950 - CEP 93.022-000 São Leopoldo - RS - Brasil

michaelsen@gmail.com, renatav@unisinos.br

Abstract. In this paper, we present the integration of the agent-oriented
programming framework Jason and the semantic web framework Jena to
support ontology-based context aware computing. These technologies together
allow for the development of context aware multi-agent systems base on
ontologies that describe context.

Keywords: Semantic Web, Ontologies, Agents, Context aware computing.

1 Introduction

The Semantic Web project and the related development of applications that make use
of knowledge resources are attracting much of current research interest. The Semantic
Web proposed technologies are also proving adequate as a basis for other important
areas of Computer Science such as Ubiquitous Computing [3]. These new computing
technologies are changing the way users interact with applications. These changes are
due to the fact that users, devices and applications are given mobility. In this scenario,
context awareness is a relevant requirement for applications. The computational
representation of context is thus a growing field of research and technology
development. Semantic Web technologies currently available, such as description
logic based ontologies and intelligent agents are promising solutions for context
representation and manipulation. These technologies allow pro-active contextual help
and guidance for mobile users and applications.

Although applications for the Semantic Web are already being proposed, often
based on agents paradigm, most of such efforts does not consider proper agent-
oriented programming languages. Besides, web ontology languages and agent
oriented programming languages have both been developed independently from each
other. On the other hand, the integration of such agent oriented programming
languages, such as AgentSpeak [1], with automatic reasoning over ontologies can
have a major impact on the development of agents and multi-agent systems that can
operate in a SemanticWeb context. In fact, the theoretical aspects of such integration
have been already proposed [5]. However, the practical integration of such
technologies for developing real applications is still a challenge.

In this work, as a first approach to explore the integration of these technologies in
a practical way, for the development of typical mobile computing applications, we
show an AgentSpeak/Jason1 prototype in which BDI agents access an OWL ontology
through the Jena framework2. The prototype implements agents that help users to find
out about locally situated services.

The paper is organized as follows: Section 2 presents an ontology that describes
contextual information; Section 3 presents an overview of the agent programming
language AgentSpeak; Section 4 presents the integration of Jason and Jena for a
context aware application prototype; Section 5 concludes the paper.

2 Argonaut Ontology

Among the key components of the Semantic Web are domain ontologies [7]. They
are the proposed model for knowledge resources, underlying specific web languages.
Ontologies are therefore the component responsible for the specification of the
domain knowledge. As they can be expressed logically, they allow for reasoning in
the specified domain. Indeed, several ontologies are being proposed for the
development of a large variety of applications [2, 3].

OWL is a language developed for representing ontology information on the
semantic web. OWL is based on descriptions logics which are appropriate for
ontological reasoning. OWL can be used to describe concepts and their relationships
as well as specific properties and restrictions through logical axioms. According to
different underlying logics, there are three versions of OWL: OWL Full, OWL DL
and OWL Lite.

OWL ontologies have been developed for ubiquitous and pervasive applications;
the SOUPA ontology is an example [2]. It was designed to support mobile
applications, its vocabulary is derived from other existing ontologies, some examples
are: FOAF, an ontology for personal relationship information, people and their basic
data such as address, phone number, e-mail, etc; DAML-Time, an ontology for
common knowledge about time and temporal events; Spatial ontologies (such as
OpenCYC and RCC) for spatial concepts and reasoning about localization.

Since ontologies are to be shared and reused, we developed a small ontology by
adapting some of the main concepts and relations of SOUPA. We created instances
corresponding to a university environment. The main concepts adapted were Person,
Geographic Space and their subclasses. New concepts were created to accommodate
the application we had in mind. The new concepts are service and distance. We used
Protégé [4] and its OWL plugin to build the ontology that is the basis of our
application. The classes Person and Service describe, respectively, the users of the
application and the services provided in different regions of the campus. The relation
“at” (for is situated at), shown in Figure 1, holds for persons and services with
geographical spaces.

1 http://jason.sourceforge.net/
2 http://jena.sourceforge.net/

Fig. 1. Relationships among concepts.

The concept GeographicalSpace can be specialized as GeographicalRegion,
FixedStructure (used for buildings) and SpaceInAFixedStructure (used for rooms). A
geographical space may be spatially subsumed by another one. For example, a fixed
structure can be spatially subsumed by a geographical region and can spatially
subsume a space in fixed structure. For example, buildings can be situated in a
campus and they can contain rooms. The concept Distance relates to geographical
spaces through the relations “from” and “to”. All instances of this concept represent a
distance between two spaces. In a specific situation we could have the user Maria,
who is an instance of Person. She is located at LabOne which in turn is a
SpaceInAFixedStructure. The instance BuildA spatially subsumes the instance
LabOne and is spatially subsumed by instance CentreX. In this situation agents that
perceive the presence of Maria in LabOne can infer that Maria is at BuildA in
CentreX.

3 AgentSpeak

As ontologies, agents are also considered a fundamental component of the
semantic web. Agents are responsible for helping the users in their service requests.
They can make use of the available knowledge; autonomously interact with other
agents, so as to act on the user’s interest. Of course, on the view of the Semantic Web
agents can only achieve these requirements by sharing domain ontologies.

Here we consider the agent oriented programming language AgentSpeak. Jason is
the interpreter for AgentSpeak, which is available Open Source under GNU LGPL at
http://jason.sourceforge.net. It implements the operational semantics of AgentSpeak
given in [8]. AgentSpeak provides an elegant abstract framework for programming
agents. An AgentSpeak agent (or program) is defined by a set of beliefs, which is a
set of ground (first-order) atomic formulas, and a set of plans which form its plan
library. AgentSpeak distinguishes two types of goals: achievement and test goals.
Achievement goals are formed by an atomic formula prefixed with the ‘!’ operator,
while test goals are prefixed with the ‘?’ operator. An achievement goal states that the
agent wants to achieve a state of the world (and it will look for a stated plan in his
plan library for that). A test goal states that the agent wants to test whether the
associated atomic formula is (or can be unified with) its beliefs. Being a reactive

planning system, the events it reacts to are related either to changes in its beliefs due
to perception of the environment, or to changes in the agent’s goals that originate
from the execution of plans triggered by previous events. A triggering event can
trigger the execution of a particular plan. Plans are written by the programmer so that
they are triggered by the addition (‘+’) or deletion (‘-’) of beliefs or goals (the “mental
attitudes” of AgentSpeak agents). These elements are exemplified in Figure 2.

 Consider a scenario where a student or academic visitor is walking around the
university campus. The student may be notified about locally available services, or
scheduled invited talks, according to the user’s preferences. In the example (Figure 2)
we show some AgentSpeak plans for this scenario.

+lecture(A,V,T) : interested_in(U,A)
 !inform(U,A,V,T)

+!inform(U,A,V,T) : ¬busy(U,T)
 show(U,A,V,T)…

Fig. 2. Examples of AgentSpeak plans.

The first plan tells us that, when a lecture A is announced at venue V and time T
(so that, from the perception of the context, a belief lecture(A,V,T) is added to the
belief base of the agent), then if a user U is interested in A, it will have the new goal
of inform interested users for that lecture. The second plan tells us that whenever this
agent adopts the goal of informing users about lectures, if it is the case that the user is
not busy at T, according to his agenda, then it can proceed to execute that plan
consisting of performing the basic action show(U,A,V,T) (assuming that it is an
atomic action that the agent can perform). This brief introduction will help to guide
the reading of the next section, in which we present our prototype. More details about
AgentSpeak can be found in [1].

4. The Argonaut prototype

Argonaut is a multi-agent system that integrates Jason and Jena in order to allow
agents to interact on the basis of contextual knowledge represented in an OWL
ontology. Jason provides the means for the specification of the environment in which
the agents actuate. In the specified environment, agents perceive the user and user
requests, they communicate with each other to provide the user information relative to
their distance to required services. Through some defined internal actions the agents
consult an OWL ontology that contains contextual information. The interaction with
the OWL ontology is done through the Jena framework.

Our scenario is such that the user is located somewhere in the university campus
and he intends to know about the available services nearby. He also intends to know
the distance from his location to some required service (library, food court, computers
lab, shops, etc). The mobile device is perceived by a server and the local interface
agent communicates with him offering the locally available services. When the local
interface agent perceives the arrival of the user, it greets him and then shows him the

locally available services. The user selects one service, the interface agent then asks
about the location of the selected service to the location agent. The location agent
gets the service and the user location and queries the distance between the user and
the service, returning it to the interface agent. The interface agent shows to the user
his distance from the required service.

In our prototype the presence of the user is simulated, the service selection is done
through the user interface and they are external events that occur in the environment.
The interface agent perceives the user selection and communicates with the location
agent, which is responsible for consulting the context ontology. Events and actions
are implemented in Jason. External events are the user arrival, which is perceived by
the environment, and the selection of one available service, made by the user. Internal
actions do not modify the environment, in the Argonaut they are responsible for
consulting the OWL ontology through the Jena framework. Queries to the ontology
return contextual information which is added in the agents’ belief base.

The system overview [6] is illustrated in Figure 3. Events are represented by stars
and actions by arrows. The two actions named with jena corresponds to internal
actions of the agents for querying the contextual OWL ontology. The result for such
queries is contextualized information that is stored in the agents’ belief bases.

Fig. 3. Argonaut system overview.

The agents are named localization and user_interface, there is a local interface for
each University Institute. Each Institutue, or region of the University, would delegate
an agent to serve as its local service interface. In this way, each locally perceived user
is tied to a local user interface agent. The prototype follows a MVC (Model View
Controller) architectural pattern. The model-view-controller separates data access and
business logic from data presentation and user interaction, by introducing an
intermediate component: the controller. The environment where the agents actuate
corresponds to the Controller module, which is also an observer to the other modules.
It is necessary because each event that happens in the View or in the Model need to be
handled by the Jason environment. Therefore, the Model module implements the
consults to the ontology, which are made through RDQL/Jena, and the View module
is responsible for the interface of the prototype, implementing some functionality to
handle graphical configurations.

These two modules implement the observable class that notifies the environment
when something happens. In this case, when there are relevant plans to deal with
events they are activated. An example is when a service is selected by the user, the
environment is notified, the agent perceives this change and the corresponding plan is
activated, as explained below.

In Jason, the environment is responsible for providing events (perceptions) to the
agents, in our prototype these events are the presence of the user and the selection for
a service made by the user through the graphical interface. The available services are
described in the ontology and they are presented to the user by the interface agent.

Next we describe the plans of the user_interface agent (Figure 4). A belief about
the presence of the user is added to the belief base of the agent. This triggers the plan
for the arrival of a new user, a plan to show the available services. The second plan is
triggered when the user selects a service. First, an action to exhibit the selected
service is executed. A test goal identifies who is the user perceived, then an achieve
message is sent to the localization agent, so that an appropriate plan of the localization
agent is triggered.

Fig. 4. User_interface agent.

The localization agent (Figure 5) executes the plan with two internal actions: an
action that consults the ontology and queries the distance between the user and the
agent; and a .send action to return the resulting distance to the agent that sent the
achieve message. This tell message will cause a belief addition in the belief base of
the user_interface agent, triggering the plan for showing the retrieved distance to the
user.

Fig. 5. Localization agent.

In our prototype, the locally available services and distance between locations are
described in the OWL ontology. Ontology queries are done with Jena, an open source

+!getDistance(User, Service)[source(SAg)] : true
<-
ont.GetDistance(User, Service, Distance);
.send(SAg, tell, distance(Distance)).

+userWasPerceived(User):
<- ont.GetServices(Centre,S);
showServices(S).

+selected(Service) : true

<- .print(Service);
?userWasPerceived(User);
.send(localization, achieve,
getDistance(User, Service)).

+distance(D) : true <- showDistance(D).

Java framework for building Semantic Web applications. It has an API that aims to
provide a consistent programming interface to the semantic web application
developer. It provides an environment for querying ontologies and includes a rule-
based inference engine. Consults using RDQL3 (RDF Data Query Language) are
done using this model. RDQL consists in a graph of triples. Each triple contains
variables which are instantiated with the corresponding required values.

The localization agent executes the action GetDistance that returns the distance
between the user and the requested service. For example, Maria is at LabOne, which
is subsumed by BuildA. The coffe service is located at LabTwo which is subsumed by
BuildC. These identifications are necessary because, in our model, the distances are
defined between instances of FixedStructure (buildings). The localization agent’s
returns the distance which is added to the belief base of the user_interface agent. Then
the user_interface agent shows the distance to the user.

5 Conclusions

In this paper we have shown a practical prototype that integrates BDI agents with
the Semantic Web framework Jena. This integration was proposed to deal with the
dynamic nature of mobile computing applications. Agents in the environment in
which the user is located communicate with the user personal agent to inform about
locally situated services. Contact with the user can be triggered by matching the user
profile and context description. Ontologies are well suited for providing such profile
and context descriptions. They represent the required knowledge in a structured and
organized way, allowing inference for integrating user’s goals with the context
features. Also, this knowledge can be both queried and modified by agents.

In [5] AgentSpeak with underlying ontological reasoning was first proposed and
formalized. That extension was shown to have the following effects: (i) more
expressive queries to the agent belief base; (ii) refined belief update, new beliefs can
only be added if the resulting belief base is consistent with the concept description;
(iii) more flexible plan search based on the subsumption relation between concepts;
and (iv) knowledge sharing by using web ontology languages such as OWL. In that
paper, it was shown how extending an agent programming language with the
descriptive and reasoning power of description logics can have a significant impact on
the way agent-oriented programming works in general and in particular for the
development of Semantic Web applications using the agent-based paradigm.
However, the practical development of that previous proposal would require changes
in the current AgentSpeak framework (Jason).

The Jason/Jena integration proposed and illustrated here is, of course, a much
simpler approach from what was proposed in that work. However, one advantage of
our proposal is that it allows the use of OWL ontologies without any modification or
redefinition in the currently available frameworks. The prototype has shown the main
components of such an architecture, which can be exploited for more elaborated
applications in future work. For example, we haven’t fully explored inference and

3 http://www.w3.org/Submission/RDQL/

reasoning that is provided by the Jena framework. For now we have only used RDQL
to query an OWL knowledge basis. In fact, with this first prototype we have only
accounted for the improvements referred to in (i) and (iv) above. We believe that
points (ii) and (iii) could as well be pursued through a deeper integration of the
technologies that we have adopted here.

Our prototype implements a fairly simple application, which serves mainly to the
purpose of illustrate the potentiality that these technologies bring about when they are
put together, being a first practical approach integrating OWL, Jason and Jena. For
now, when executing the Argonaut, the presence of a user is simulated. Ideally, that
is, in a real implementation, this perception would happen through sensors located at
different locations. Also, in a more sophisticated implementation, the agents could be
distributed over a network. The View module could be customizable based on
information retrieved from the ontology, in a contextualized way, considering the user
profile and device characteristics. For this, an ontology extension would be required.
Other similar interesting applications could be explored for the presented prototype,
such as, for instance, cars communicating with available services in the road.

References

1. Bordini, R., Hubner, J. and Wooldridge, M.: Programming AgentSpeak Agents with
Jason. John Wiley & Sons. 288p (2007).

2. Chen, H., Chen, H., Perich, F., Finin, T., Joshi, A: SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications, In Proceedings of the First Annual
International Conference on Mobile and Ubiquitous Systems: Networking and
Services (Mobiquitous 2004), Boston, MA, August (2004).

3. Chen, H., Chen, H., Perich, F., Chakraborty, D., Finin, T., Joshi, A.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing, 19(5):69–
79, November/December 2004.

4. Horridge, M., H. Knublauch, A. Rector, R. Stevens, C. Wroe.: A Practical Guide To
Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools,
Technical Report, Ed. 1.0, The University Of Manchester (2004).

5. Moreira, A., Vieira, R., Bordini, R., Hubner, J.: Agent-Oriented Programming with
Underlying Ontological Reasoning. In: Declarative Agent Languages and
Technologies III: Third International Workshop, Utrecht, The Netherlands, Selected
and Revised Papers. Vol. 3904, pp. 155--170. Springer, Berlin (2006)

6. Padgham, L. and Winikoff, M.: Prometheus: A Methodology for Developing
Intelligent Agents. LNCS, vol. 2585, pp. 174--185. Springer (2003)

7. Staab, S. and Studer, R. (eds.): Handbook on Ontologies. International Handbooks on
Information Systems. Springer-Verlag, Berlin–Heidelberg (2004)

8. Vieira, R., Moreira, A., Bordini, R. and Wooldridge, M.: On the Formal Semantics of
Speech-Act Based Communication in an Agent-Oriented Programming Language.
Journal of Artificial Intelligence Research, Vol 29, p. 221-267 (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

