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Abstract. The need for specifying choreographies when developing ser-
vice oriented systems recently arose as an important issue. Although
declarativeness has been identified as a key feature, several proposed ap-
proaches model choreographies by focusing on procedural aspects, e.g. by
specifying control and message flows of the interacting services. A similar
issue has been addressed in Multi-Agent Systems (MAS), where declara-
tive approaches based on social semantics have been used to capture the
nature of agents interaction without over-constraining their behavior.
In this paper we show how DecSerFlow can be mapped to SCIFF in an
automatic and complete way. DecSerFlow is a graphical language capable
to model in an intuitive and declarative fashion service flows, whereas
SCIFF is a framework based on abductive logic programming originally
developed for dealing with social interactions in MAS. By means of a
running example, we show how the conjunct use of both approaches
could be fruitfully exploited to declaratively specify and verify service
choreographies.

1 Introduction

The service oriented paradigm and the related technologies for implementing
and interconnecting basic services are reaching a good level of maturity and a
widespread adoption. Nevertheless, modeling service interaction from a global
viewpoint, i.e. representing service choreographies, is still an open challenge [1].
Indeed, the need for specifying choreographies when developing service oriented
systems recently arose as an important issue.

As pointed out in [1, 2], the current major proposals for modeling service
interaction, such as WS-BPEL [3] and WS-CDL [4], miss to tackle some key
concepts. As a consequence of the adoption of a “global view” (which inherently
crosses organizational boundaries and should be consequently independent from
the perspective of single participants), declarativeness becomes a fundamental
requirement. Each organization perceives a choreography as a public contract
which provides the rules of engagement for making all the interacting parties



correctly collaborate, without stating how such a collaboration is concretely car-
ried out; in our view, this latter information should be kept private in the entities’
definition/implementation, and not directly addressed at the choreography level.

The main problem is that, although declarativeness has been identified as
a key feature, several proposed approaches model choreographies by focusing
on procedural aspects, e.g. by specifying the control and message flow of the
interacting services. This often causes the modeler to miss the real focus of the
choreography, leading to over-constrain the choreography under study and to
consequently loose some acceptable interactions.

To overcome these limits, van der Aalst and Pesic have proposed DecSerFlow
[5], a truly declarative graphical language for the specification of service flows.
DecSerFlow adopts a more general and high-level view of services specification,
by defining them through a set of policies or business rules. It does not give a
complete and procedural specification of services, but concentrates on what is the
(minimal) set of constraints to be fulfilled in order to successfully accomplish the
interaction. Beyond its appealing graphical representation, DecSerFlow concepts
have an underlying semantics in terms of Linear Temporal Logic (LTL).

The issue about what information should be captured or left out by the global
view of interaction has been (and is still) matter of discussion also in the MAS
research community, and in both settings we find similar efforts and proposed
solutions. Therefore, it is not surprising that multi-agent and service-oriented
systems share many similarities [6] (see Table 1).

MAS SOA
interacting agents autonomous heterogeneous

agents
autonomous heterougeneous
services

communication communicative acts messages
local view of interaction (external) agents policies behavioral interfaces
global view of interaction global interaction protocols choreographies

Table 1. Some similarities between multi-agent and service-oriented systems

When dealing with the problem of modeling global interaction protocols
within a MAS, we mainly find two complementary approaches, as in the case of
choreographies: approaches with aim to exactly specify how the interaction pro-
tocol should be executed by the interacting agents (such as for example AUML
[7]), and approaches which consider MAS as open societies and model interac-
tion protocols as a way to declaratively constrain the possible interactions. So-
cial approaches abstract away from the nature of interacting entities, supporting
heterogeneity, and adopt an open perspective, i.e. let participants autonomously
behave as they want, where not explicitly forbidden. Furthermore, their aim is
not only to support the specification task, but also to define a precise seman-
tics of interaction, enabling the possibility to perform verification tasks. Many
prominent works center around the concept of commitment in social agencies,
to represent the state of affairs during the social interaction. For example, in



[8] the semantics of communicative acts is defined by means of transitions on a
finite state automaton which describes the concept of commitment; in [9], the au-
thors adopts a variant of Event Calculus to commitment-based protocols, where
commitments evolve in relation to events and fluents and the semantics of mes-
sages is given in terms of predicates on such events and fluents (to describe how
messages affect commitments). In the last years, Singh et al. have applied the
concept of commitment-based protocols in the context of the Service Oriented
Architecture and Business Process Management, by addressing the problem of
business process adaptability [10] and of protocols composition [11]. The idea of
taking social semantics from the MAS world and applying it to the specification
of service choreographies has been adopted also in [12], although the focus is
more on the procedural aspects, rather than on the declarative ones.

Within the SOCS EU Project 3 we have developed a language, called SCIFF,
for specifying global interactions protocols in open agent societies, giving its
declarative semantics in terms of Abductive Logic Programming (ALP) [13].
Furthermore, we have equipped the SCIFF language with a corresponding proof
procedure, capable to verify at run-time (or a posteriori, by analizing a log
of the interaction) whether interacting agents behave in a conformant manner
w.r.t. the modeled interaction protocol. Protocols are specified only by consid-
ering the external observable behavior of interacting entities (i.e. the different
observable events which occurred during the interaction), and by the concept
of expectation about desired events and interactions; occurred events and pos-
itive/negative expectations are linked by means of forward rules called Social
Integrity Constraints.

We believe that the conjunct use of declarative approaches coming from the
Service Oriented Computing (SOC) and Multi Agent Systems (MAS) research
areas could be fruitfully exploited to specify and verify service choreographies. To
this aim, in this paper we show how DecSerFlow can be mapped to SCIFF in an
automatic and complete way, making the two proposals benefit from each other.
We motivate the importance of adopting a declarative approach for modeling
choreographies and show the feasibility of our approach by considering a simple
but interesting running example.

The paper is organized as follows: sections 2 and 3 respectively introduce
the running example and describe some issues which arise when modeling a
choreography. Section 4 briefly introduce the DecSerFlow language, showing how
the running example could be successfully modeled by using it; then, section 5
presents the SCIFF framework and how DecSerFlow can be expressed in terms
of SCIFF Integrity Constraints. Discussion and Conclusions follow.

2 A running example

Let us consider a choreography that envisages three different roles: a customer
which interacts with a seller to place an order of a set of items, and a warehouse
3 SOcieties of heterogeneous ComputeeS, IST-2001-32530 (home page

http://lia.deis.unibo.it/research/SOCS/).



which could participate to the interaction by communicating to the seller if it is
able (or not) to ship the ordered items.

Each execution of the choreography (a choreography instance) is identified by
the concept of order. The customer makes up an order by choosing one or more
items from the seller list. During the order building phase (i.e. before committing
an order), it is always possible to cancel the order; in this case, the user cannot
choose other items within the same instance anymore, and the choreography
terminates (a canceled order cannot be committed). After having committed an
order, the customer expects a positive or negative answer from the seller. In case
of a positive answer, a payment phase will be performed: the customer will pay
for the order and, finally, the seller will deliver a single corresponding receipt.

The seller could freely decide whether to confirm or refuse customer’s order,
but sometimes it has also to consider the opinion of the warehouse about the
shipment:

– the seller can confirm the order only if the warehouse has previously con-
firmed the shipment;

– if the warehouse states that it is unable to execute the shipment, then the
seller should refuse (or have refused) the order.

3 What is the focus of a choreography?

By looking at the choreography description of the previous section, we notice that
it is inherently declarative. It does not fix the control flow of the involved services,
nor how they should exchange messages in order to accomplish the choreographic
strategic goal. Rather, it focuses on a more abstract level, trying to capture the
essential of the interaction by adopting a global and open perspective, not driven
by implementation needs. This is the reason why we find, inside the description,
different kinds of constraints, as for example:

– time-ordered relationships among activities (“after having committed an
order, the customer expects a positive or negative answer”);

– cardinality constraints (“the seller will deliver a single corresponding re-
ceipt”);

– negative relationships, to express also what is forbidden during the choreog-
raphy execution (“the user cannot choose other items [. . . ] anymore”)

– non-deterministic/opaque choices as well as non-oriented relationships among
activities (e.g., the seller can refuse independently from the warehouse an-
swer).

It is worth noting that negative information, as far as we are concerned, is not
addressed by current proposals: they adopt a procedural-oriented control flow
approach making the implicit assumption that all that is not explicitly mod-
eled is forbidden. As pointed out in [5], the impossibility of expressing negative
relationships forces the modeler to explicitly enumerate all the allowed possibil-
ities, introducing ambiguous decision points. This often leads to over-constrain
the model, forbidding possible executions which actually correctly realize the
intended choreography (see [14] for a discussion).
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Fig. 1. Three different possible realizations of the acceptance phase in BPMN.

3.1 Avoiding over-specifications

Avoiding over-specifications is a key issue when modeling choreographies. Instead
of strictly specify one of the possible behaviors which is able to respect the
choreography, the aim of the modeler should be the identification of the minimal
set of constraints that correctly regulate the interaction, achieving a trade-off
between the specification of what is forbidden/expected and what is allowed.

An interesting example which clearly shows such issue is the order accep-
tance phase described in Section 2. The aim of this phase is to identify when
a committed order should be accepted or rejected by the seller, taking into
account (in some cases) the warehouse too. At a choreographic level, the cou-
pling between seller and warehouse and between customer and warehouse is
reduced at a minimum. First of all, when and how the warehouse is contacted
is not specified; furthermore, there could be different choreography executions
in which the warehouse is not contacted at all. An execution in which the seller
autonomously decides to reject the order, without asking warehouse’s opinion, is
clearly accepted by the choreography; the case in which the warehouse refuses the
shipment without observing the commited order (because e.g. it is overloaded)
is implicitly envisaged too.

The over-specification problem arises if we try to model the acceptance phase
by using one of the current proposed languages for choreographies. Figure 1
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Fig. 2. A general framework for the specification and verification of choreographies

shows three different over-specified possible realizations of the acceptance phase
by adopting BPMN [15] collaborative models.

Diagram 1(a) shows a choreography where, after having received order’s com-
mitment, the seller contacts the warehouse in order to know if it can ship the
order or not. Then, if the seller evaluates that, due to a private policy, it is in
any case unable to confirm the order, it will send a message to the warehouse in
order to stop the processing of its decision; otherwise, the seller will confirm or
refuse the order by considering warehouse’s answer. In diagram 1(b), instead, we
find that the seller firstly evaluates its internal policies, and contacts the ware-
house only if the choreography prescribe to do so (i.e. only if it would accept the
order; in this case, receiving an answer from the warehouse is a mandatory re-
quirement). Finally, diagram 1(c) shows a different message flow from customer’s
side, and envisages a seller who does not apply any private choice, but simply
forwards what has been decided by the warehouse.

The three diagrams shows that approaching the choreography modeling task
by adopting a typical control+message flow perspective leads to pointlessly com-
plicate the model, loosing some acceptable interactions. We think that such a
perspective should be matter of a second phase, in which the choreographic
model is grounded on a set of service behavioral interfaces, to be developed from
scratch or selected from an already existing repository.

3.2 Towards a framework encompassing semantics and verification
capabilities

Besides being able to really capture the different concepts involved in a choreog-
raphy, possibly in a user-friendly way, a modeling language should be supported
by an underlying formal (possibly declarative) semantics, hence making possible
different kind of verifications. Figure 2 shows the schema of a general choreog-
raphy specification and verification framework.

The framework is mainly composed by three different parts: (i) a (graphical)
high-level modeling language, capable to specify choreographies; (ii) an under-
lying formal language, equipped with different verification capabilities; and (iii)
a mapping between the two specification languages, in order to automatically
obtain the formal description from the graphical one.



W.r.t. the verification issue, we cite three fundamental ones:

– properties verification, to ensure that a choreography meets some general
(such as livelock and deadlock freedom) or specific (i.e. domain dependent)
properties;

– conformance verification, to verify (at run-time or a posteriori, by analyzing
a message log) whether a set of services executing the choreography behaves
as prescribed by the model;

– interoperability verification [16], to check if a concrete service behavioral
interface is capable to play a given role within the choreography.

It is worth noting that such three verification issues are the same as the
ones introduced by Guerin and Pitt in the context of open MAS [17]: (i) verify
protocol properties, (ii) verify compliance by observation, and (iii) verify that
an agent will always comply.

We propose to ground the general framework shown in Figure 2 by adopt-
ing DecSerFlow as a graphical specification language, and to exploit SCIFF as
its underlying formalism. To demonstrate the feasibility of our approach, we
show how our running example could be successfully expressed in DecSerFlow,
and then provide the mapping of the different DecSerFlow concepts to SCIFF
Integrity Constraints. In [18] we already introduced the use of SCIFF for speci-
fying choreographies and performing the conformance verification task, leaving
out the high-level specification language and the corresponding mapping; this
work could be considered as a first step to fill this gap.

4 Choreography modeling in DecSerFlow

In [5], van der Aalst and Pesic propose DecSerFlow, a declarative language for
modeling service flows. Besides declarativeness, its advantages rely on its ap-
pealing graphical appearance, its extensibility and its formal semantics given by
means of Linear Temporal Logic (LTL).

As described in [5], modeling service specifications in DecSerFlow starts by
identifying the different involved activities (i.e. atomic logical unit of work),
and then to identify constraints on their execution, a lá policies/business rules.
Constraints are given as templates, i.e. as relationships between two (or more)
whatsoever activities: typically, the terms source and target activities indicate
activities linked by a relationship, where the execution of the source activity
“activates” the relation and impose some constraint on the target activity. The
meaning of each constraint template is expressed as an LTL formula, hence the
name “formulas” to indicate DecSerFlow relationships.

DecSerFlow core relationships are grouped into three families:

– existence formulas, unary relationships used to constrain the cardinality of
activities;

– relation formulas, which define (positive) relationships and dependencies be-
tween two (or more) activities;



source template
name

target description (from the example)

cancel
order

C1 negation
response

choose item in case of cancelation, the user cannot
choose other items [. . . ] anymore

C2 responded
absence

commit order a canceled order cannot be commited

commit
order

C3 response refuse or confirm
order

after having committed an order, the cus-
tomer expects a positive or negative an-
swer from the seller

C4 precedence confirm shipment the seller could confirm the order only if
the warehouse has previously confirmed
the shipment

confirm
order

C5 response payment in the former situation [positive answer], a
payment phase will be performed

refuse
shipment

C6 responded
existence

refuse order if the warehouse [. . . ] is unable to execute
the shipment, then the seller should refuse
(or have refused) the order

payment C7 response receipt delivery the customer will pay for the order and,
then, the seller should deliver a single cor-
responding receipt

receipt
delivery

C8 cardinality
0..1

the seller will deliver a single corresponding
receipt

Table 2. Mapping the statements of the running example to DecSerFlow constraints

– negation formulas, the negated version of relation formulas.

In order to present the DecSerFlow notation and how it could be effectively
used to model service choreographies, we show how our running example could
be expressed as a DecSerFlow diagram. In our example, we will use only a limited
number of DecSerFlow relations, such as responded existence (if A is performed,
then also B must be performed, either before or after A) and response (if A
is performed, then B must be performed after). For a complete description of
the DecSerFlow language and its underlying LTL formalization, the interested
reader is referred to [5].

4.1 Modeling the running example

Table 2 shows how the different statements of our running example could be
translated to DecSerFlow activities and constraints in an intuitive and straight-
forward way.

For example, to specify that only a single receipt should be delivered by the
seller, we may use the DecSerFlow absence(1) existence formula. The absence(N)
formula indeed states that the involved activity cannot be executed more than
N times, i.e. constrains its cardinality between 0 and N . A responded existence
relation is used to model the relationship between the refusal of shipment and
order: it states that if the shipment is refused by the warehouse, the refuse



order activity should be executed too, either before or after it. DecSerFlow’s
response relation imposes a forward temporal order on the responded existence
formula; for example, constraint C3 states that after having executed the order
commitment, then a positive or negative answer from the seller is expected to
be performed afterwards (when more target activities are involved, they are
considered in a disjunctive manner). Obviously, a precedence formula is provided
too, (e.g. C4).

DecSerFlow defines also more complex relationships, which are not part of
our running example. An example is the chain response formula, which allows
the user to model the typical strict sequence relationships of business processes:
it states that whenever the source happens, then the target should be performed
immediately after it.

For each positive relationships, DecSerFlow defines a corresponding negative
version. Basically, negative relations forbids the execution of the target activity
under certain conditions. E.g., the responded absence relationship (which is actu-
ally the negation of the responded existence one) states that if the source activity
is executed, then the target activity is forbidden. Such a negative relationship is
used e.g. to model the impossibility to commit an order if it is canceled by the
customer (constraint C2). It is worth noting that, as pointed out in [5], some
negative relations are equivalent; e.g., stating that B is responded absence of A
is equivalent to specify that A and B should not coexist in the same execution
instance.

4.2 Completing the DecSerFlow model

By deeply analyzing the running example, we could complete the DecSerFlow
diagram shown in Table 2 with other useful inferred constraints, in order to really
model all the intented concepts of the description; the result is shown in Table
3, while in Figure 3 the whole set of constraints is shown using the DecSerFlow
graphical notation (see also Tables 4 and 5 for the correspondence between the
DecSerFlow graphical symbols and their meaning).

C15 and C16 deal with the core concept of the choreography, which is actually
the commitment of one order. Since such an order could be canceled, we attach an
absence(1) constraint to the order commitment activity (to express that at most
one order can be committed), and bind the cancelation and the commitment with
a mutual substitution DecSerFlow relation, which states that at least one of the
two bounded activities has to be executed (i.e. an order should be committed or
canceled).

5 Mapping DecSerFlow to the SCIFF framework

The SCIFF [13] language was originally introduced for the specification of global
interaction protocols in open agent societies. As we have already pointed out, it
does not make any assumption about participants internals, but instead focuses



source type target description (from the example)
refuse
order

C9 precedence commit order An answer from the seller is valid only if it
is performed after order commitment

confirm
order

C10 precedence commit order

payment C5 precedence confirm order A valid payment should be preceded by the
confirmation of the order

deliver
receipt

C7 precedence payment The receipt should be delivered only if the
order has been paid

target type target description (from the example)
confirm
order

C11 not co-
existence

refuse order Possible answers are mutually exclusive

confirm
shipment

C12 not co-
existence

refuse shipment

commit
order

C13 precedence choose item an order is made up by at least one chosen
item

cancel
order

C14 precedence choose item

commit
order

C15 cardinality
0..1

the choreography centres around the con-
cept of a single order, which could possibly
be canceled

commit
order

C16 mutual
substitu-
tion

cancel order

Table 3. Inferred DecSerFlow constraints to complete the running example

on the observable and relevant events which occur within the society at run-
time. To let the user decides which are the relevant events inside the considered
domain, the SCIFF language completely abstracts from the problem of deciding
“what is an event”.

SCIFF adopts an explicit notion of time, and models the occurrence of an
event Ev at a certain time T as H(Ev, T ), where Ev is a logic programming
term and T is an integer, representing the discrete time point at which the event
happened (the bold H stand for “Happened”). The set of all the events that
have happened during a protocol execution constitutes its interaction log.

Beside the explicit representation of what has already happened, SCIFF in-
troduces the concept of “what” is expected to happen, and “when”. The notion of
expectation plays a key role when defining interaction protocols, choreographies,
and more in general any dynamically evolving process: it is quite natural, in fact,
to think of such processes in terms of rules of the form “if A happened, then
B should be expected to happen, under certain conditions”. In agreement with
DecSerFlow, SCIFF pays particular attention to the openness of interaction:
interacting peers are not completely constrained, but they enjoy some freedom.
This means that the prohibition of a certain event should be explicitly expressed
in the model and this is the reason why SCIFF supports also the concept of neg-
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Fig. 3. DecSerFlow model of the running example

ative expectations (i.e. of what is expected not to happen). Positive expectations
about events come with form E(Ev, T ), where Ev and T could be variables, or
they could be grounded to a particular (partially specified) term or value respec-
tively. Constraints (a là Constraint Logic Programming), like T > 10, as well as
Prolog predicates can be specified over the variables; attaching the example con-
straint on the above expectation means that the expectation is about an event
to happen at a time greater than 10. Conversely, negative expectations about
events come with form EN(Ev, T ); just to give an intuition, variables used inside
negative expectations are universally quantified: writing EN(Ev, T ) ∧ T > 10
means that Ev is forbidden at any time which is greater than 10.

Social Integrity Constraints are forward rules used to link happened events
and expectations in order to define the declarative rules which regulate the course
of interaction, i.e. model the interaction protocol. They come as rules of the form
body → head, where body can contain (a conjunction of) happened events and
expectations, and head can contain (a disjunction of conjunctions of) positive
and negative expectations. For example, to model that “if a customer sends the
payment to the seller, then the seller should answer delivering the corresponding
receipt, within 24 hours” we could use the following Integrity Constraint:

H(pay(Customer,Seller, Item), Tp)

→E(deliver(Seller,Customer, receipt(Order, Id)), Td) ∧ Td > Tp ∧ Td < Tp + 24.

SCIFF accepts also a (Prolog) knowledge base, where the user can define
all the pieces of knowledge which are independent from the interaction. De-
fined predicates could be used inside Integrity Constraints, reconciling forward,
abductive reasoning with backward, goal-oriented reasoning. Finally, note that
interaction is considered to be goal oriented: the same interaction protocol could
be seamlessly used for achieving different goals, which can be expressed by means
of Prolog predicates and expectations.



The SCIFF semantics is based on Abductive Logic Programming: an interac-
tion specification (i.e. the set of rules regulating the allowed possible interactions)
is mapped to an Abductive Logic Program, where Integrity Constraints define
the interaction protocols, and positive/negative expectations are considered as
abducibles. The operational counterpart of the language, namely the SCIFF
proof procedure, is indeed able to verify conformance of a set of interacting en-
tities w.r.t. the considered protocol by hypothesizing positive (resp. negative)
expectations and checking whether a matching happened event actually exists
(resp. does not exist). For a detailed description of the SCIFF language, as well
as its declarative semantics and the corresponding proof procedure, the inter-
ested reader is referred to [13].

5.1 Expressing DecSerFlow concepts as Integrity Constraints

Let us now consider again our running example, in order to explain how the
different DecSerFlow concepts could be mapped to SCIFF Integrity Constraints.

Roughly speaking, each DecSerFlow constraint is mapped to a set of SCIFF
Integrity Constraints. The body of the Integrity Constraint which maps a rela-
tion or negation formula is constituted by the happened event which corresponds
to the formula’s source (each DecSerFlow relation is triggered when its source
activity is performed). Depending on the nature of the relation, the head is
instead is determined by (a disjunction of) positive or negative expectations.

For example, to specify that a generic activity A is subject to an absence(N)
cardinality constraint, SCIFF uses an Integrity Constraint which states that
if N different executions of A are performed, then the N + 1-th is forbidden.
Since SCIFF adopts an explicit notion of time, differences between executions
are modeled as differences between the involved execution times; hence, the
absence(N) on activity A can be specified as follows4:

N̂

i=1

“
H(A, Ti) ∧ Ti > Ti−1

”
→ EN(A,T ) ∧ T > TN .

Furthermore, thanks to the explicit notion of time, another interesting feature
of the mapping is that the “response” and “precedence” version of each formula
are formalized in the same way, but by imposing opposite constraints on the
involved times. Table 4 explicitly points out such similarities by showing how
the responded existence, response and precedence constraints, as well as their
negated version, can be mapped to SCIFF.

Some DecSerFlow formulas are translated to SCIFF in a slight different way.
In particular, their mapping do not have a triggering part but simply generates a
set of expectations (see Table 5). Therefore, they define, in some sense, the initial
goal of the choreography, since the corresponding expectations are generated
independently from the interaction.

Table 6 represents the complete mapping of the DecSerFlow model shown
in Figure 3. For the sake of simplicity, we have left out the information about
4 We suppose that T0 = 0 and that at a given time only one activity can happen.



DecSerFlow formula Meaning SCIFF Integrity Constraint

! "
if A is executed, then B
should be executed too

H(A,TA) → E(B,TB)

! "
if A is executed, then B can-
not be executed

H(A,TA) → EN(B,TB)

! "
if A is executed, then B
should be executed after it

H(A,TA) → E(B,TB) ∧TB > TA

! "
if A is executed, then B can-
not be executed after it

H(A,TA) → EN(B,TB) ∧TB > TA

! "
if A is executed, then B
should be executed before it

H(A,TA) → E(B,TB) ∧TB < TA

! "
if A is executed, then B can-
not be executed before it

H(A,TA) → EN(B,TB) ∧TB < TA

Table 4. Mapping of the simple DecSerFlow relation and negation formulas in SCIFF

DecSerFlow formula Meaning SCIFF Integrity Constraint

!

"

A is forbidden → EN(A, TA)

!

"##$ A has to be executed at least
N times

→
VN

i=1

“
E(A, Ti) ∧ Ti > Ti−1

! " A or B should be executed → E(A, TA) ∨ E(B, TA)

Table 5. Mapping of “goal-oriented” DecSerFlow formulas

activities originators (i.e. about the role responsible for an activity); such an
information could be seamlessly added to the SCIFF formalization, but it is not
envisaged in the current version of DecSerFlow.

As already pointed out, DecSerFlow defines other constraints, missing in our
running example. Anyway, they are mapped to SCIFF Integrity Constraints
too (see [19] for a complete description of such a mapping). For example, the
following rule maps the chain response between A and B:

H(A, TA) →E(B, TB) ∧ TB > TA ∧ EN(X, TX) ∧ TX > TA ∧ TX < TB.

The translation tries to intuitively capture the notion of next state, which is
directly expressed in LTL as a temporal modality (by using the operator ◦). It
relies on the fact that if B should belong to the next state of A, then between
the two execution times no other activity should be performed. For a description
of the complete translation of core DecSerFlow concepts to SCIFF, see [19].

6 Discussion and Conclusions

In this work we have proposed a conjunct use of declarative approaches coming
from the SOC and MAS research areas, to the aim of specifying and verifying
service choreographies.



C1 H(cancel order, Tc) → EN(choose item, Ti) ∧ Ti > Tc.

C2 H(cancel order, Tc) → EN(commit order, To).

H(commit order, To) → EN(cancel order, Tc).

C3 H(commit order, To) → E(confirm order, Tc) ∧ Tc > To

∨ E(refuse order, Tr) ∧ Tr > To.

C4 H(confirm order, To) → E(confirm shipment, Ts) ∧ Ts < To.

C5 H(confirm order, Tc) → E(payment,Tp) ∧ Tp > Tc.

H(payment,Tp) → E(confirm order, Tc) ∧ Tc < Tp.

C6 H(refuse shipment, Ts) → E(refuse order, To).

C7 H(payment,Tp) → E(deliver receipt, Td) ∧ Td > Tp.

H(deliver receipt, Td) → E(payment,Tp) ∧ Tp < Td.

C8 H(deliver receipt, Td1) → EN(deliver receipt, Td2) ∧ Td2 > Td1.

C9 H(refuse order, Tr) → E(commit order, To) ∧ To < Tr.

C10 H(confirm order, Tc) → E(commit order, To) ∧ To < Tc.

C11 H(refuse order, Tr) → EN(confirm order, Tc).

H(confirm order, Tc) → EN(refuse order, Tr).

C12 H(refuse shipment, Tr) → EN(confirm shipment, Tc).

H(confirm shipment, Tc) → EN(refuse shipment, Tr).

C13 H(commit order, Tc) → E(choose item, Ti) ∧ Ti < Tc.

C14 H(cancel order, Tc) → E(choose item, Ti) ∧ Ti < Tc.

C15 H(commit order, Tc1) → EN(commit order, Tc2) ∧ Tc2 > Tc1.

C16 → E(commit order, To)

∨ E(cancel order, Tc).

Table 6. Mapping of the DecSerFlow running example to SCIFF

In particular, we have chosen DecSerFlow as the modeling language and
SCIFF as its underlying formalization. To make DecSerFlow benefit of SCIFF
in an automatic way, we have shown how the different DecSerFlow concepts
can be mapped to SCIFF Integrity Constraints and applied our methodology
on a running example. The advantage of such a translation is twofold: on one
hand, it is possible to specify SCIFF rules by using an intuitive, extensible and
user-friendly graphical language; on the other hand, a DecSerFlow model may
be grounded not only on LTL but also on the SCIFF abductive framework,
acquiring some new advantages and features, such as:



– Expressivity of the language. The SCIFF language is capable to model rich
constraints and conditions on data and execution times involved in the in-
teraction; we are currently studying how DecSerFlow could be extended to
graphically represent such constraints.

– Verification capabilities of the SCIFF framework. As described in [13, 18],
by translating DecSerFlow to a SCIFF specification we could automatically
use it to perform the conformance verification task. Furthermore, SCIFF
has been extended to deal also with the verification of properties [20] and
interoperability [21]; we intend to study how such extended proofs could be
applied to DecSerFlow models, aiming at covering all the building parts of
the general framework schema shown in figure 2.

– Possibility to mine DecSerFlow models from execution traces. Since SCIFF
belongs to the logic programming setting, it is possible to apply all the rea-
soning techniques developed inside such a setting on it. In particular, in
[22] we have shown how an Inductive Logic Programming algorithm can be
adapted to mine SCIFF rules from event logs; thanks to the one-to-one map-
ping of DecSerFlow concepts to SCIFF, it is then possible to automatically
obtain a corresponding DecSerFlow description of the mined model.

Finally, as future work we envisage a deep comparison between SCIFF and
LTL, to better understand their strength, weaknesses and relationships and to
exploit the possibility to have two different mappings of DecSerFlow.
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