
Integrating Agents, Ontologies, and
Web Services to Build

Flexible Sketch-based Applications

Giovanni Casella1,2 and Vincenzo Deufemia2

1 Dipartimento di Informatica e Scienze dell’Informazione – Università di Genova
Via Dodecaneso 35, 16146, Genova, Italy

casella@disi.unige.it
2 Dipartimento di Matematica e Informatica – Università di Salerno

Via Ponte don Melillo, 84084 Fisciano (SA), Italy
deufemia@unisa.it

Abstract. We present an approach based on web services, for building
open and dynamic agent societies aimed at hand-drawn sketch recogni-
tion. The approach exploits ontologies to enable agents to agree on mes-
sage semantics and service purposes, standard web services languages
to represent agent interaction protocols in a suitable way to be ex-
changed and handled by agents and web services to expose low-level
recognition services. The communication mechanisms that characterize
our approach, as well as the modular architecture allow agent societies
to self-organize at run time, for gaining the capability of recognizing new
domain languages, thus obtaining new flexible sketch-based applications.

1 Introduction

Sketching provides a natural way for humans to design (buildings, software,
electronic circuits, and so on), to communicate and cooperate, to share ideas, to
transfer information. As an example, sketching allows an architect, or engineer
to quickly specify a design. Architects make exploratory sketches before making
more definitive schematic design drawings and models, and finally construction
and fabrication drawings. Mechanical engineers make sketches as part of a pro-
cess that also includes calculations, material specifications, and detailed design
drawings.

Computers can support users in the sketching process only if they are able to
understand the sketch semantics, i.e., they can recognize what the user sketches
represent. However, since hand-drawn input tends to be highly variable and
inconsistent sketch interpretation turns out to be a difficult task. Sketch recog-
nition systems must robustly cope with the variations and ambiguities inherent
in hand drawings, facing the task of grouping a user’s pen strokes into clusters
representing intended symbols, the task of identifying several symbols in one
single stroke, and so on.

In [1] we have exploited intelligent agents to face the diagrammatic sketch
recognition problem. The use of agents was inspired by the observation that the

2 G. Casella and V. Deufemia

“virtual blank sheet” where the user draws represents a dynamic and unpre-
dictable environment, and the entities devoted to recognize the symbols of some
language must be responsive, pro-active, situated, autonomous, and social. In [2]
we have presented a Multi-Agent System (MAS) that makes use of collaborating
intelligent agents to coordinate a set of heterogeneous symbol recognizers and
to generate a sketch interpretation.

This system presents many features suitable for sketch understanding, but
it also shows several limitations. In particular, even if the MAS can be built to
recognize any domain language, it is impossible to change the domain language
while the system is running. This is mainly useful when the users exploit sketches
to express new ideas (e.g., an interior architect may wish to add a new shape
in its sketched design to represent a new decorative element, such as a flower
vase) or when the set of symbols to be recognized can evolve, as for example, in
the domain of hieroglyph recognition where new symbols can still be discovered.
Another limitation is that if we have a MAS able to recognize a set of symbols
S1, such as use case diagrams, it is not possible to use it to recognize a set of
symbols S2, such as finite state machines, even if S1 and S2 share some symbols.
Moreover, the MAS does not allow users to integrate interfaces customized to
specific tasks. As an example, if the MAS has been designed to facilitate stu-
dents in the specification of assignment’s solutions, it cannot be changed, at run
time, into a system that enables teachers to specify solutions to assignments and
automatically evaluate student work.

These limitations are mainly due to the lack of flexibility of the agent organi-
zation and interactions that, once specified at design time, cannot be adapted to
the domain and users’ needs at run-time. In this paper, we face these problems
by giving to the agents in the MAS suitable means

– to look for the services provided by the other agents,
– to interact with the other agents following heterogeneous interaction proto-

cols, and
– to be able to understand the message semantic and the meaning of the

services offered by each agent.

In this way it is possible to recognize new languages and to realize new sketch-
based applications changing the interactions between existing agents and/or
adding new agents at run-time. In particular, we propose to use ontologies to
enable our agents to agree on message semantics and service purposes, and stan-
dard web service languages to represent AIP in a way suitable to be exchanged
and handled by agents. Web services have also be used to expose low-level recog-
nition services.

The paper is organized as follows. Section 2 introduces the sketch under-
standing problem and our previously proposed solution. In Section 3 we present
the proposed open society for sketch understanding. Section 4 describes how
agents publish, reason and learn agent interaction protocols, while Section 5 de-
fines web services for sketch recognition. Finally, Section 6 contains a discussion
of related work and conclusions.

Building Flexible Sketch-based Applications 3

2 Sketch Recognition and a MAS to Support it

Sketches are informal drawings created by people to represent abstract concepts
and acquired by computers in the format of point chains. The pen trajectory on
the screen between each pair of pen-down and pen-up operations, i.e., a unit of
user’s original sketch input, is named stroke. As an example, the human stick
figure depicted in Fig. 1(a) is composed of four strokes.

(a) (b)

Fig. 1. Two examples of sketches: a sequence diagram (a) and a musical score
(b).

Usually, the interpretation of a sketch is performed by classifying the strokes
into primitive geometric objects, such as line, arc, and ellipse, and by clustering
the primitive shapes into a set of intended symbols. As an example, a human
stick is recognized by clustering five line strokes and one ellipse stroke properly
related. However, it is worth to note that, according to the user drawing style,
the shape of the abstract concepts, namely the symbols, can be drawn using a
varying number of strokes (e.g., the two upper rectangles in Fig. 1(a) have been
drawn with one stroke and three strokes, respectively), can contain ambiguities
(e.g., the recognizer can associate the head of the leftmost note in Fig. 1(b) both
to its right and left stems), or be incomplete. These issues make the recognition
of sketches a very critical task.

To minimize the recognition mistakes many systems have constrained the
user’s drawing style (e.g., enforcing users to carefully draw each symbol with
a single stroke) making the recognition process easier. However, in order to be
really usable and useful in practice, sketch recognition systems should not place
constraints on how the users can draw symbols. Indeed, users should be able to
draw without having to worry about where to start a stroke, how many strokes
to use, in what order to draw the strokes, etc. Beside this, in order to be flexibly
adapted to new needs and visual domain languages the recognition system should
be able to easily integrate new symbol recognizers without needing to change
any other component.

The multi-agent approach to sketch recognition proposed in [2] implements
a sketch recognition system having the above features. In particular, it

4 G. Casella and V. Deufemia

– manages the variation in drawing style by an ink parsing process that groups
and segments the user’s strokes into clusters of intended symbols;

– solves the ambiguities due to the possible membership of one stroke to more
than one symbol, by analyzing the objects surrounding the ambiguous parts,
i.e., the context around them;

– coordinates the behavior of the symbol recognizers in such a way to detect
and solve conflicting interpretations of symbols;

– integrates in a seamless way heterogeneous symbol recognizers in order to
exploit different techniques for recognizing different symbols.

The recognition approach is based on a MAS composed by intelligent coop-
erating agents with specific tasks. The MAS contains a set of Symbol Recognizer
Agents (SRAs) devoted to recognize the symbols (i.e., their shapes) of a given
domain. Each SRA uses an internal recognition algorithm to recognize all the
instances of a particular symbol in the sketch, and is able to exchange feed-
back messages with other SRAs in order to compute contextual information. In
particular, when an SRA recognizes a symbol S the belief that S is a correct
interpretation increases if other SRAs have recognized symbols that are related
with S.

The set of recognized symbols, together with the collected feedbacks, are
sent to the Sketch Interpreter Agent (SIA) that analyzes and solves the possible
arising conflicts, where a conflict occurs when two or more recognized shapes
share one or more strokes.

In the following we exemplify the behavior of the MAS on the UML Use
Case Diagram notation. This notation is characterized by the graphical symbols
depicted in Fig. 2 and a set of permitted relations between them. Such diagrams
are composed of use cases, actors, and connectors among them. In particular,
there is only one type of relationship that may occur between actors and use
cases; it is visualized like a solid line, named communication link. Four types of
relationships between use cases are supported by UML: communication, inclu-
sion, extension (visualized as the inclusion but with label <<extend>>), and
generalization. The only type of relationships that may hold among actors is
generalization.

Circle Shape for
Use Case symbol Stick Human for

Actor symbol

Line for
Communication

symbol

Open Arrow for
Include symbol

Triangle shaped
arrow for

Generalize symbol

Fig. 2. Use Case Diagram symbols.

Let us suppose that the user draws a Use Case diagram composed by an
actor that participates through a communication symbol to a use case, as shown

Building Flexible Sketch-based Applications 5

in Fig. 3. Each SRA in the MAS analyzes the sketch to recognize a particular
Use Case symbol. The Actor SRA recognizes actor A1 (surrounded by a dotted
box in the figure). The Communication SRA recognizes C1 and C2, where C1 is
part of the actor A1. Use Case SRA recognizes U1 and U2, while Include SRA
recognizes I1. Generalize and Extend SRAs do not recognize any symbol. For
each recognized symbol each SRA requests a feedback to the proper SRAs. In
particular, the following feedback messages are exchanged:

– Communication SRA obtains a feedback for C1 from Use Case SRA since it
recognized U1 (and vice versa);

– Include SRA obtains a feedback for I1 from Use Case SRA since it recognized
U1 (and vice versa);

– Communication SRA obtains a feedback for C2 from Actor SRA since it
recognized A1 (and vice versa);

– Use Case SRA obtains a feedback for U2 from Communication SRA since it
recognized C2 (and vice versa).

Finally, each SRA sends the recognized symbols and their feedback to the
SIA agent that has to detect and solve conflicts. In particular, A1, C1, and U1 are
in conflict, while U2 and C2 are considered “unambiguous symbols” because are
not in conflict. The unambiguous symbols and the collected feedback are used
by the SIA to solve the conflicts. In particular, the SIA applies the following
reasoning: A1 has a feedback from C2 that is unambiguous, while C1 and I1

have a feedback from U1, but C1, I1, and U1 are in conflict. Then A1 has been
correctly recognized, while C1 and U1 have been misrecognized. After the conflict
resolution the SIA interprets the sketch as an Actor A1, a Communication C2,
and a Use Case symbol U2. The SIA reasoning and the SRAs behavior are
detailed in [1].

3 An Open Society for Sketch Understanding

Fig. 4 shows the proposed society of agents and services for sketch understanding,
named AgentSketch. The society extends the MAS proposed in [1] to support the
building of flexible sketch-based applications that can be easily applied across
a variety of domains. Indeed, it can be configured to recognize different domain
languages and can be extended with new functionalities by adding new agents
to the society at run-time.

The features previously described are possible thanks to the proposed ar-
chitecture, composed by agents and web services, and to the use of suitable
ontologies and web service (WS) languages. The latter play a central role to en-
able agents developed by different organizations and with heterogeneous internal
behaviors to interact and to join the society at run-time.

We have identified four groups of agents to build the society:

– Symbol Recognition Group: Agents belonging to this group, namely
Symbol Recognizer Agents (SRAs), are able to recognize a particular domain

6 G. Casella and V. Deufemia

User Sketch The sketch contains an
Actor, a Communication,

and a Use Case
SIA

U2

Use Case SRA

U1

Link SRA

C1
C2

Include SRA

I1

Actor SRA

A1

Extend SRA

Generalize SRA

Fig. 3. Use Case diagram interpretation.

symbol and to collaborate with other SRAs in order to obtain contextual
information on their recognized symbols. Each SRA interacts with a Shape
Recognizer Web Service to recognize a symbol.

– Sketch Interpretation Group: Agents that belong to this group, namely
Sketch Interpreter Agents (SIAs), are able to coordinate the recognition pro-
cess of a set of SRAs by reasoning on the recognized symbols and elaborating
an interpretation of the whole sketch.

– Domain Expert Group: A Domain Expert Agent (DEA) is able to reason
on the sketch interpretations provided by SIAs to face a domain specific task.
For example, a DEA could support the user to correctly design circuits by
reasoning on the diagrams representing them. Another DEA could be able
to reason on Use Case diagrams to help the user to enhance their clarity.

– Intelligent Interface Group: Intelligent Interface Agents (IIAs) are able
to interact with the user in order to enable him/her to draw a diagrammatic
sketch and to support him/her in solving a particular task working on the
sketch interpretation. An IIA is designed to work on a particular domain
language and is customized for a particular purpose. Each IIA collaborates
with a SIA to obtain the interpretation of the user sketch and with one or
more DEAs to perform some tasks on a previously interpreted sketch.

In order to support agent interactions we have included in our architecture
two services, the “Agent Directory Service” and the “Ontology Agent Service” in-
troduced by the “Abstract Architecture Specification” [3] and by the “Ontology
Service Specification” [4], respectively.

An agent uses the Agent Directory Service to register itself and the services
that it is able to provide in the “Agent Directory”. Moreover, an agent queries

Building Flexible Sketch-based Applications 7

Agent Directory
 Service

Sketch Interpretion Group

Intelligent
Interface

Domain Expert
Group

Generalize
Recognizer

Actor
Recognizer

House
Recognizer

End State
Recognizer

Use Case
Interpreter

Finite State
Machine

Interpreter

Building Design
Interpreter

Software Design
Interface

Building Design
Interface

Learning FSM
Interface

Safety Building
Interface

Safety Rule
Checker

Use Case
prompter

Learner
Evaluator

Link
Recognizer

Symbol Recognition Group

Square
Recognizer

WS

Triangle
Recognizer

WS
Circle

Recognizer
WS

Rectangle
Recognizer

WS

Service
Broker

Ontology Agent
Service

OKB

Web
Service

Fig. 4. The AgentSketch society architecture.

the Agent Directory to find other agents able to provide the services that it
needs.

We have included in our framework a shared ontological knowledge base,
namely AgentSketch OKB, to enable agents to agree on message semantics and
service purposes. The Ontology Agent Service supports our community of agents
providing services to discover and browse the ontology, and to add instances to
the ontology concepts. The OKB will be described in Section 3.1.

Finally, a set of Web Services support SRAs to recognize hand-drawn shapes
by offering suitable shape recognition implementations. Agents can find these
services through the “Service Broker” also included in our society. Both the
Agent Directory and the Service Broker enable agents to discover services, but
while the first is suitable to contain agent’s information (name, description,
interaction protocols) and is used by all the agents, the latter is suitable to
contain WSs information (address, WSDL description, and so on) and is used
only by SRAs. The WSs of AgentSketch are detailed in Section 5.

The AgentSketch society depicted in Fig. 4 includes WSs able to recognize
some basic shapes (i.e., square, arrow, circle, and so on), SRAs able to recognize
symbols (i.e., Actor, Generalize, End State, and so on), SIAs able to interpret
sketch belonging to different domain languages (i.e., Use Case, Finite State Ma-
chine, and so on), IIAs useful for different tasks (i.e., Software Design, Building
Design, Learning), and finally, DEA able to furnish domain-specific services (i.e.,
prompt hints to enhance a Use Case, check if a building design satisfies a set of

8 G. Casella and V. Deufemia

security constraints, check if a Use Case diagram is correct for learning purposes).
New agents can be added at run-time to increase the society capabilities.

3.1 AgentSketch Ontological Knowledge Base

As stated in [5] to become a member of a society an agent must agree to adhere
to the constraints of the system, and in return the agent can benefit from the
other members of the society, e.g., their knowledge or services. When an agent
enters in the AgentSketch society it must agree to use the AgentSketch OKB
to properly communicate with other agents and to understand the services they
provide. AgentSketch OKB is shown in Fig. 5.

Concept

Language Symbol

 respect a

Shape

has a is composed
by

Stroke

is composed by

Point

Arrow Triangle Human House …

Genealogical
Tree

FSM UML
UseCase

…

NearParallelAbove …

applies to

Geometrical
Relations

EllipseArcLine

Service

Safety
Rule

Checking

Actor
Recognition

Use Case
Interpretation …

Class

Legend
B inherits from A

BA BA

Relation from A to B

Sketch

belongs to

Feedback Conflict

Fig. 5. AgentSketch ontological knowledge base.

Since in AgentSketch society the recognition of a single shape is performed
by a single agent, the ontology does not contain low-level concepts about shape
recognition, such as shape structure, aggregate of shapes, shape features, and so
on. Moreover, the agents do not discuss about their intentions or goals (intentions
and goals of each kind of agent are implicitly defined by the services they offer
as detailed in the following) so these concepts are not modeled in the ontology.

A common issue is that usually an agent also has an internal ontology used
to represent its knowledge and to perform reasoning. In order to use the inter-
nal ontology and the shared ontology in a consistent way the agent needs to
semantically relate its internal ontology with the shared one. In literature many
general approaches for ontology mapping are available [6].

In AgentSketch OKB the class Concept acts just as the ontology root: all
other classes represent concepts. The class Service represents a service offered
by an agent. Example of services are: to recognize a particular symbol, to inter-
pret a sketch belonging to a given language, to check if a diagrammatic sketch

Building Flexible Sketch-based Applications 9

satisfies the language constraints, to suggest users a sketch re-arrangement, and
so on. The Sketch class represents a diagrammatic hand-drawn sketch, i.e., a
diagram belonging to a particular language. A Language represents a visual do-
main language and can be described in terms of symbols and rules (i.e., UML
Use Case, Genealogy Trees, and so on). In particular, a Language is composed
of a set of symbols, while the rules define allowed relationships between sym-
bols. A Symbol belongs to a particular Language and has a particular Shape.
For example, the Include symbol belongs to the UML use case diagrams and its
shape is an Arrow. A Stroke represents a user stroke (or a segment of it) and
it is composed of a point chain. Geometrical relations apply to symbols, shapes,
strokes, and points. Above, Under, LeftOf, Parallel, Near are instances of geo-
metrical relations. The Feedback concept represents a feedback sent by an SRA
to another about symbol recognition in order to compute contextual informa-
tion. The Conflict concept represents a conflict between two or more recognized
symbol interpretations.

3.2 Symbol Recognition and Sketch Interpretation Groups

An SRA is designed to interact with a Shape Recognizer WS for recognizing
a particular domain symbol and to collaborate with other SRAs to compute
contextual information (feedback exchange). In particular, the WS includes an
algorithm to recognize a shape, while the SRA is able to handle the recognized
shape as a domain symbol extracting the meaningful features and interacting
with other agents to obtain the symbol context. Considering for example the
use case diagrams, the SRA devoted to recognize the Include symbol interacts
with the WS providing the shape recognition service for the Arrow shape, and
collaborates with the SRA devoted to recognize the Use Case symbol.

The role of SIAs is to interpret diagrammatic hand-drawn sketches according
to a domain language. The main task of the SIA is to interact with a set of SRAs,
to collect their recognized symbols, and to build a coherent sketch interpretation
solving the arising conflicts. When a SIA enters in the AgentSketch society it
queries the Agent Directory and the OKB to find the SRAs able to recognize
the symbols of the domain language. For each SRA it retrieves, from the agent
directory, the AIP that it has to follow in order to obtain the service. When
the SIA has found the properly SRAs it registers to the Agent Directory and
advertises the domain language interpretation service, with the AIP to follow,
that it is able to provide. Finally, the SIA browses the OKB to find the language
it is able to recognize, if not found then it is added to the instances of the
Language concept and the symbols to the instances of the Symbol concept.
Using the OKB, the agents can understand the language that the SIA is able to
recognize and the symbols that belong to this language.

To obtain the SRA service the SIA has to follows the AIP depicted in Fig.
6 and represented using AUML [5]. The first message sent by the SIA is a
request containing: a sketch identifier sk(id), the set of SRAs for the feedback
exchange relatedSRA(sr), and the geometrical relations symb rel(r) that are
allowed between the symbol recognized by the SRA and the shapes recognized by

10 G. Casella and V. Deufemia

the related SRAs. The geometrical relations are extracted by the language rules
about symbols relationships. As an example, from the rule “a Communication
symbol can be connected to an Actor symbol” we extract the relation “the
bounding box of an actor symbol can be near the end or the start point of a
Communication symbol”. In order to exchange feedback SRA must be able to
check these geometric relations starting from the shape recognized by the WS.
The SRA can autonomously decide (outer alternative fragment) to provide the
service (accept(sk(id))) or not (reject(sk(id))) (e.g., based on the amount of
sketches handled at that time by the SRA). If the request is accepted the loop
fragment is executed until the protocol ends. In the loop three cases can happen
(inner alternative fragment):

1. The SIA sends a message, inform(“strokes(set), sketch(id))”), to inform
the SRA that the user has drawn a set of strokes that has to be analyzed.

2. The SIA sends a message to the SRA, request(“recognized shapes, sk(id)”),
to request the set of recognized shapes, and the SRA replies sending the
shapes with the message inform(“recognized shapes(set), sk(id))”).

3. The SIA informs the SRA that the user has terminated the drawing by
sending the message inform(“sketch finished, sk(id)”).

sd
ShapeRecognition

SIA:
sketchInterpreter

loop

request
 (“sk(id), relatedSRA(sr), symb_rel(r)”)

SRA:
sketchRecognizer

alternative
inform

(“strokes(set), sketch(id))”)

request
(“recognized_shapes, sk(id)”)

 inform
(“recognized_shapes(set), sk(id))”)

inform
 (“sketch_finished, sk(id)”)

alternative

accept (“sk(id)”)

reject (“sk(id)”)

 inform
(“recognized_shapes(set), sk(id))”)

Fig. 6. AUML interaction protocol for the recognition services provided by an
SRA.

When a new SRA joins the AgentSketch society it registers to the Agent
Directory Service its description (name, address, and so on) and advertises its

Building Flexible Sketch-based Applications 11

recognition service. The SRA adds a standardized textual representation (de-
tailed in Section 4) of the AIP shown in Fig. 6 to its service description. The
SRA also adds to the service description the name of the symbol that it is able
to recognize. Finally, the SRA browse the AgentSketch OKB and, if it is not
present, add the symbol that it is able to recognize to the instances of the Sym-
bol concept. Using the OKB another agent can understand the symbol that the
SRA is able to recognize.

3.3 Intelligent Interface Agent Group

The main goal of an Intelligent Interface Agent (IIA) is to handle complex in-
teractions with the user in order to enable him/her to draw a diagrammatic
sketch and to present him/her feedbacks on the sketch interpretation process
(performed by a SIA). Moreover, the IIA can interact with one or more DEA to
offer to the user some domain specific services.

To find a SIA able to interpret a given domain language the IIA queries the
Agent Directory and the OKB. The SIA retrieves the AIP published by the SIA
and follows it to obtain the service. The IIA provides the SIA with the needed
information about the sketch (drawn stroke and their attributes, such as spatial
coordinates). Moreover, the suitable DEAs are found queering the Agent Direc-
tory. An IIA also offers to the users “Intelligent Symbol Manipulations” features.
This features support users to easily modify the sketch (for example moving a
symbol S while the system automatically re-arrange the symbols related to it)
and prevent the violations of the language constraints.

3.4 Domain Expert Agent Group

A DEA is an agent designed to work on the model represented by a diagrammatic
sketch (sketch semantic). For example, a DEA could be designed to analyze a
diagram representing a building in order to check if some safety rules are satisfied
and to prompt some suggestions. The services offered by DEAs are domain-
specific and the Agent Interaction Protocols to follow to obtain these services
can be very different. However, each DEA registers its provided service and the
AIP to obtain it in the Agent Directory.

3.5 An agent society for Use Case Diagram understanding and
reasoning

In this section we exemplify the agent society behavior of the intelligent sketch-
based application for designing use case diagrams.

Fig. 7 shows the components composing the society and some agent interac-
tions of an application for use case design. In particular, for each shape repre-
senting a use case diagram symbol a suitable WS must be available, and for each
symbol an SRA must be added to the society. Each SRA searches the suitable
WS by querying the Service Broker (arrow 1), and then registers itself in the

12 G. Casella and V. Deufemia

Agent Directory (arrow 2). A use case diagram SIA has also to be added to the
AgentSketch society. This SIA queries the Agent Directory for finding the SRAs
able to recognize the use case diagram symbols and for registering its interpre-
tation service (arrows 3 and 4). Finally, an IIA handles the user interactions
by finding the suitable SIA through the Agent Directory (arrow 5). If the user
needs advanced domain specific services, one or more DEAs can be added to the
society, even at run-time, and the IIA can find them using the Agent Directory
(arrow 6).

Agent Directory
 Service

Sketch Interpretation
Group

Intelligent Interface Group Domain Expert
Group

Use Case
Recognizer

Actor
Recognizer Generalize

Recognizer

Use Case
Interpreter

Software Design
Interface

Use Case
prompter

Link
Recognizer

Stick
Recognition

WS

Arrow
Recognition

WS

Circle
Recognition

WS

Line
Recognition

WS

Shape Recognition Group

Service
Broker

1

2

5

3

4 Ontology Agent
 Service

6

Fig. 7. An agent society for use case diagram recognition-based application.

4 Enabling Agents to Exchange Agent Interaction
Protocols

As detailed in the previous sections new agents joining AgentSketch society
need to interact with other agents in order to request their services. This can be
accomplished only if the agent that need the services follow the AIP associated
to them.

Many AOSE methodologies (for example GAIA [7]) take AIP as their starting
point to design MASs. Indeed, interacting agents are implemented according to
the designed AIPs. AgentSketch society enables agent development at different
times and from different development groups by exploiting the advertisement of
offered services, and related AIPs to follow in order to obtain these services. In
particular, agents can find a service and the AIP to follow by looking into the
agent directory. Obviously, the AIPs have to be represented in a standardized
unambiguous way, so that the agents can easily handle. A widespread visual

Building Flexible Sketch-based Applications 13

notation used to represent and design AIPs is AUML interaction diagrams [8],
an extension of UML sequence diagrams. AUML diagrams are visual diagrams
conceived to design MAS by humans and are not suitable for representing AIP
in a precise computer processable way. In order to be processed in an automatic
way by computers, textual notations are still widely considered to have some
significant advantages.

In [9] we have proposed to represent AIPs using a widespread standard
textual notation designed for Web Services: the Web Services Business Pro-
cess Execution Language [10]. WS-BPEL is layered on top of WSDL [11] and
provides a language for the formal specification of business protocols describ-
ing the mutually visible message exchange of each of the parties involved in
the protocol, without revealing their internal behavior. In particular, we have
detailed the translation process from AUML to WS-BPEL and we have real-
ized a AUML2WS-BPEL Translator1, to obtain the automatic translation of an
AUML AIP to a WS-BPEL document. In our agent society the AUML2WS-
BPEL Translator, available as a set of Java library, can be used by an agent
providing a service (i.e., an SRA, a SIA, or a DEA) to generate the WSBPEL
representation of the AIP that an agent, that needs the service, namely service
consumer has to follow.

The AUML2WS-BPEL Translator can also be used to obtain a Prolog rep-
resentation of an AIP represented in BPEL. The AIP Prolog representation, as
described in [9], can be used to semi-automatically generate the programming
code needed by a service consumer agent to execute the AIP. The generated
code can be executed in JADE2 by means of the DCaseLP [12] libraries.

In the AgentSketch society, an agent that needs a service can use the trans-
lator to generate the suitable code to handle the AIP published in the Agent
Directory by the service provider. For example, an IIA can find a service offered
by a DEA in the Directory Agent and can generate the code needed to handle
it.

Fig. 8 summarizes the AIP exchange process. The service provider generates
the WS-BPEL representation of the AIP associated to a service and stores it
in the Agent Directory. The service consumer looks for the service in the Agent
Directory and retrieves the BPEL representation of the AIP to follow.

Agent Directory
 Service

Service
Provider

Service
AIP WS-BPEL
representation

Service
AIP WS-BPEL
representation Service

Consumer

Fig. 8. AIP exchange process.

1 AUML2WSBPEL Translator, http://www.disi.unige.it/person/MascardiV/

Software/AUML2WS-BPEL.html
2 http://jade.tilab.com/

http://www.disi.unige.it/person/MascardiV/Software/AUML2WS-BPEL.html
http://www.disi.unige.it/person/MascardiV/Software/AUML2WS-BPEL.html
http://jade.tilab.com/

14 G. Casella and V. Deufemia

5 Shape Recognizer Web Services

The implementation of Shape Recognizers (SR) as WSs allows us to integrate
in AgentSketch shape recognizers implemented by anyone and in any language,
physically stored anywhere, running on any platform, and replaceable with a
minimal effort. The use of WSs is also motivated by the low quantity and the
simple structure of data to be exchanged between SR and SRA and by the strong
availability of standards, design patterns, and development tools. Moreover, the
results obtained in the composition of WSs could be exploited to realize complex
SRs as composition of simple ones.

Each Shape Recognizer Web Service can internally be based on a different
shape recognition approach (for example, Ladder [13] and Sketch Grammars [14]
represent suitable choices), however, all WSs must expose the same interface.

The operations that each WS has to expose are described in the following in
a “Java like” style:

– void start new sketch(Integer sketch id)
This operation is used to inform the SR that a new sketch, identified by a
number, namely the sketch id, is started. The SR initializes itself to handle
the shape recognition associated with the sketch and allocates all the needed
resources.

– void input strokes(Vector strokes info, Integer sketch id)
This operation is used to give a set of strokes in input to the SR. The strokes
are associated to a sketch identified by the sketch id parameter. Each stroke
is represented by an element of the Vector strokes info where each element
contains the following fields:
• Integer stroke id: represents the unique id in a sketch associated to the

stroke
• V ector points: represents the set of key points that characterize the

stroke. Each point is represented by its position (x, y coordinates) and
by its drawn time t.

The input strokes operation is called every time the user adds new strokes
to the sketch or modify some strokes (for example moving or resizing them).
If the SR receives new information about previously known strokes (it can
happen if the user moves, resize or modify them), it updates the information
associated to it.

– Vector input ns get rsymbols(Vector strokes info, Integer sketch id)
This operation is similar to the previous one, but it is used to give a set of
strokes in input to the SR and at the same time to ask the set of recog-
nized symbols. The set of recognized symbol is represented by a Vector of
recognized symbol info where each element represents a recognized symbol
and it is composed by the following fields:
• Integer recognized symbol id: the unique id of the symbol;
• String recognized symbol name: the recognized symbol name;
• V ector stroke id vector: a vector containing all the strokes id used to

recognize the symbol;

Building Flexible Sketch-based Applications 15

• ShapeGeometricAttributes spg: each shape has associated a set of at-
tributes computed by the SR and defined in the sketch ontology.

– void delete input strokes(Vector strokes id, Integer sketch id)
This operation is invoked when the user deletes some strokes (strokes id)
from the sketch (sketch id).

– Vector get recognized symbol(Integer sketch id)
This operations is used to ask to the SR the set of recognized symbol for a
given sketch sketch id. The output is the same of the input ns get rsymbols
operation.

– void end sketch(Integer sketch id)
This operation is used to inform the SR that a sketch is finished and all the
resource associated with it can be released.

As described in Section 3, WSs advertise agents about their capabilities by means
of a Service Broker.

6 Related Work and Conclusions

In the last two decades several approaches have been proposed for the recognition
of freehand drawings but few of them exploit agent technology. QuickSet uses a
suite of agents for multimodal human-computer communication [15], whereas the
approach proposed in [16] uses a system for graphic unit recognition, where sin-
gular agents may specialize in graphic unit-recognition, and multi-agent systems
can address problems of ambiguity through negotiation mechanisms. EsQUIsE
is an interactive tool for free-hand sketches to support early architectural design
[17]. The same system has been extended with the possibility of interpreting vo-
cal information [18]. In particular, the graphical inputs are interpreted by either
rule-based agents or model-based agents, while the spoken inputs are interpreted
by model-based vocal agents.

Regarding the use of ontologies, Zheng and Sun proposed in [19] a sketch
understanding process driven by domain knowledge bases. Their framework al-
lows users to easily adapt the hierarchical understanding process to any domain
through the definition of visual concept ontologies.

In this paper we have not concentrated on sketch recognition issues (the
suitability and the effectiveness of the agent-based approach for sketch recogni-
tion, which is the backbone of the current proposal, have already been discussed
in [2]) but we have focused to the flexibility issues of sketch recognition-based
system. In particular, we have presented a framework that combines Web Ser-
vices and Ontologies, for building open and dynamic agent societies aimed at
hand-drawn sketch recognition. Ontologies enable agents to agree on message
semantics and service purposes, standard web services languages to represent
agent interaction protocols in a suitable way to be exchanged and handled by
agents, and WSs to expose low-level recognition services. The flexibility of the
agent organization and interactions allows us to recognize new languages and to
realize new sketch-based applications changing the interactions between existing
agents and/or adding new agents at run-time.

16 G. Casella and V. Deufemia

References

1. Casella, G., Costagliola, G., Deufemia, V., Martelli, M., Mascardi, V.: An agent-
based framework for context-driven interpretation of symbols in diagrammatic
sketches. In: Proc. of VL/HCC 06, Brighton, UK, IEEE CS Press (2006) 73–80

2. Casella, G., Deufemia, V., Mascardi, V., Costagliola, G., Martelli, M.: An agent-
based framework for sketched symbols intepretation. To appear in Journal of Visual
Languages & Computing.

3. Foundation for Intelligent Physical Agents: FIPA abstract architecture specifica-
tion. http://www.fipa.org/specs/fipa00001/SC00001L.html (2002)

4. Foundation for Intelligent Physical Agents: FIPA ontology service specification.
http://www.fipa.org/specs/fipa00086/XC00086D.html (2001)

5. Walton, C.: Agency and the Semantic Web. Oxford University Press (2006)
6. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM SIGMOD

Record 35(3) (2006) 34–41
7. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3(3) (2000) 285–312

8. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML.
In: Proc. of AAMAS’04, IEEE CS Press (2006) 1244–1245

9. Casella, G., Mascardi, V.: Intelligent agents that reason about web services: a logic
programming approach. In: Proc. of International Workshop on Applications of
Logic Program. in the Semantic Web and Semantic Web Services, Seattle, WA,
USA (2006) 55–70

10. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,
Thatte, S., Yendluri, P., Yiu, A., eds.: Web Services Business Process Execution
Language (WS-BPEL). Version 2.0. (2005)

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C Note. (2001)

12. Gungui, I., Martelli, M., Mascardi, V.: DCaseLP: a prototyping environment for
multilingual agent systems. Technical Report DISI-TR-05-20, DISI, Univ. of Gen-
ova, Italy (2005)

13. Hammond, T., Davis, R.: LADDER, A sketching language for user interface de-
velopers. Computers & Graphics 29(4) (2005) 518–532

14. Costagliola, G., Deufemia, V., Risi, M.: Sketch Grammars: A formalism for de-
scribing and recognizing diagrammatic sketch languages. In: Proc. of ICDAR’05,
IEEE Press (2005) 1226–1230

15. Cohen, P.R., Johnston, M., McGee, D., Smith, I., Pittman, J., Chen, L., Clow, J.:
Multimodal interaction for distributed interactive simulation. In: Proc. of IAAI’97,
AAAI Press (1997) 978–985

16. Achten, H.H., Jessurun, A.J.: An agent framework for recognition of graphic units
in drawings. In: Proc. of eCAADe’02, Warsaw (2002) 246–253

17. Juchmes, R., Leclercq, P., Azar, S.: A freehand-sketch environment for architec-
tural design supported by a multi-agent system. Computers & Graphics 29(6)
(2005) 905–915

18. Azar, S., Couvreury, L., Delfosse, V., Jaspartz, B., Boulanger, C.: An agent-based
multimodal interface for sketch interpretation. In: Proc. of MMSP-06, British
Columbia, Canada (2006)

19. Zheng, W.T., Sun, Z.X.: Knowledge-based hierarchical sketch understanding. In:
Proc. of ICMLC’5. (2005) 2838–2843

http://www.fipa.org/specs/fipa00001/SC00001L.html
http://www.fipa.org/specs/fipa00086/XC00086D.html

	Integrating Agents, Ontologies, and Web Services to Build Flexible Sketch-based Applications
	G. Casella and V. Deufemia
	Introduction
	Sketch Recognition and a MAS to Support it
	An Open Society for Sketch Understanding
	AgentSketch Ontological Knowledge Base
	Symbol Recognition and Sketch Interpretation Groups
	Intelligent Interface Agent Group
	Domain Expert Agent Group
	An agent society for Use Case Diagram understanding and reasoning

	Enabling Agents to Exchange Agent Interaction Protocols
	Shape Recognizer Web Services
	Related Work and Conclusions

