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Abstract. In this paper we generalize and merge two models of roles
used in multiagent systems which address complementary aspects: en-
acting roles and communication among roles in an organization or insti-
tution. We do this by proposing a metamodel of roles and specializing
the metamodel to fit two existing models. We show how the two ap-
proaches can be integrated since they deal with complementary aspects:
[1] focuses on roles as a way to specify interactions among agents, and,
thus, it emphasizes the public character of roles. [2] focuses instead on
how roles are played, and thus it emphasizes the private aspects of roles:
how the beliefs and goals of the roles become the beliefs and goals of the
agents. The former approach focuses on the dynamics of roles in func-
tion of the communication process. The latter approach focuses on the
internal dynamics of the agents when they start playing a role or shift
the role they are currently playing.

1 Introduction

In the last years, the usefulness of roles in designing agent organizations has been
widely acknowledged. Witness not only the papers appeared at AAMAS, IAT,
but also the creation of specialized workshops which have agent organizations
(COIN, ROLES, AOSE, NorMAS, etc.) among their topics.

Many different models have been designed. Some of them use roles only in
the design phases of a MAS [3], while other ones consider roles as first class
entities which exist also during the runtime of the system [4]. Some of them
focuses on how roles are played by agents [2], other ones on how roles are used
in communication among agents in organizations [1].

This heterogeneity of the way roles are defined and used in MAS risks to
be a danger for the interoperability of agents in open systems, since each agent
entering a MAS can have a radically different notion of role. Thus, the newly en-
tered agents cannot be governed by means of organizations regulating the MAS.
Imposing to all agent designers a single notion of role is a strategy that cannot



have success. Rather, it would be helpful to design both multiagent infrastruc-
tures that are able to deal with different notions of roles, and to have agents
which are able to adapt to open systems which use different notions of roles in
organizations. This alternative strategy can be costly if it is not possible to have
a general model of role that is compatible, or can be made compatible with other
existing concepts.

In this paper we generalize and merge two models of roles used in multia-
gent systems, in order to promote the interoperability of systems. The research
question is: How to combine the model of role enactment by [2] with the model
of communication among organizational roles of [1]?

We answer these questions by extending to agents a metamodel of roles de-
veloped for object oriented systems [5]. The relevant questions, in this case, are:
how to introduce beliefs, goals and other mental attitudes in objects, and how
to pass from the method invocation paradigm to the message passing paradigm.

Then we specialize the metamodel to model two existing approaches and
we show how they can be integrated in the metamodel since they deal with
complementary aspects. We choose to model the proposals of [1] and [2] since
they are representative of two main traditions. The first tradition is using roles
to model the interaction among agents in organizations, and the second one is
about role enactment, i.e., to study how agents have to behave when they play
a role.

From one side, organizational models are motivated by the fact that agents
playing roles may change, for example a secretary may be replaced by another
one if she is ill. Therefore, these models define interaction in terms of roles
rather than agents. In [1] roles model the public image that agents build during
the interaction with other agents; such image represents the behavior agents
are publicly committed to. However, this model leaves unspecified, how given a
role, its player will behave. This is a general problem of organizational models
which neglect that when, for example, a secretary falls ill, there are usually
some problems with ongoing issues (the new secretary does not know precisely
the thing to be done, arrangements already made etc.). So having a model of
enacting and deacting agents surely leads to some new challenges, which could
not be discussed, simulated or formally analyzed without this model.

In contrast, the organizational view focuses on the dynamics of roles in func-
tion of the communication process: roles evolve according to the speech acts
of the interactants, e.g. the commitment made by a speaker or the commands
made by other agents playing roles which are empowered to give orders. In this
model roles are modeled as sets of beliefs and goals which are the description
of the expected behavior of the agent. Roles are not isolated, but belongs to
institutions, where constitutive rules specify how the roles change according to
the moves played in the interactions by the agents enacting the roles.

[2] focuses, instead, on how roles are played by an agent , and, thus, on the
private aspects of roles. Given a role described in terms of beliefs, goals, and other
components, like plans, their model describe how these mental attitudes become
the beliefs and goals of the agents. In this model roles are fixed descriptions,



so they do not have a dynamics like in the model of [1]. Moreover, when roles
are considered inside organizations new problems for role enactment emerge:
for example, how to coordinate with the other agents knowing what they are
expected to do in their role, and how to use the powers which are put at disposal
of the player of the role in the organization. The same role definition should lead
to different behaviors when the role is played in different organizations.

In contrast, it specifies the internal dynamics of the agents when they start
playing (or enacting in their terminology) a role or shift the role they are cur-
rently playing (called the activated role). So they model role enacting agents:
agents that know which roles they play, the definitions of those roles, and which
autonomously adapt their mental states to play the roles.

Despite the apparent differences, the two approaches are compatible since
they both attributes beliefs and goals to roles. So we study by means of the
metamodel how they can be combined to have a more comprehensive model of
roles.

The paper is structured as follows. In Section 2 we describe the requirements
on agents and roles in order to build a metamodel; in Section 3 we formally
define the metamodel for roles together with its dynamics; in Section 4 we de-
fine the basic notions to model agents that play roles; Section 5 deals with the
modeling of enacting agents as in [2]; Section 6 introduces and models roles to
deal with coordination in organizations; in Section 7 we merge [2] and [1] into
the framework introduced in Section 3; Conclusions end the paper.

2 Agents and roles

Since the aim of this paper is to build a metamodel to promote interoperability,
we make minimal assumptions on agents and roles.

The starting point of our proposal is a role metamodel for object orientation.
The relation of objects and agents is not clear, and to pass from object to agents
we take inspiration from the Jade model [6].

Agents, differently than objects, do not have methods that can be invoked
starting from a reference to the object. Rather, they have an identity and they
interact via messages. Messages are delivered by the MAS infrastructure, so that
agents can be located in different platforms. The messages are modeled via the
usual send-receive protocol. We abstract in the metamodel from the details of
the communication infrastructure (whether it uses message buffers, etc.).

Agents have beliefs and goals. Goals are modeled as methods which can be
executed only by the agent itself when it decides to achieve the goal.

As said above, we propose a very simple model of agents to avoid controversial
issues. When we pass to roles, however, controversial issues cannot be avoided.

The requirements to cope with both models of roles we want to integrate are:

– Roles are instances, associated in some way to their players.
– Roles are described (at least) in terms of beliefs and goals.
– Roles change over time.



– Roles belong to institutions, where the interaction among roles is specified.

– The interaction among roles specifies how the state of roles changes over
time.

In [1] roles are used to model interaction, so agents exchange messages ac-
cording to some protocol passing via their roles. This means that the agent have
to act on the roles, e.g., to specify which is the move the role has to play in
certain moment. Moreover, roles interact with each other.

[2]’s model specifies how the state of the agent changes in function of the
beliefs and goals of the roles it plays. However, it does not consider the possibility
that the state of the role change and, thus, it ignores how the agent becomes
aware of the changes of beliefs and goals of the role.

To combine the two models we have to specify how the interaction between
an agent and its role happens when the agent changes the state of the role or
the state of the role is changed by some event. A role could be considered as an
object, and its player could invoke a method of the role. However, this scenario
is not possible, since the roles are strictly related to the institution they belong
to, and we cannot assume that the institution and all the agents playing roles in
the institution are located on the same agent platform. So method invocation is
not possible unless some sophisticated remote method invocation infrastructure
is used. Moreover, the role have to communicate with its player when its beliefs
and goals are updated. Given that the agent is not an object, the only possibility
is that a role sends a message to its player. As a consequence, we decide to model
the interaction between the agent and the role by means of messages too.

Finally, we have to model the interaction among roles. Since all roles of an
institution belongs to the same agent platform, they do not necessarily have to
communicate via messages. To simplify the interaction, we model communication
among roles by means of method invocation.

The fact that roles belong to an institution has another consequence. Accord-
ing to the powerJava model of roles in object oriented programming languages,
roles, seen as objects, belong to the same namespace of the institution. This
means that each role can access the state of the institution and of the sibling
roles. This allows to see roles as a way to specify coordination [7].

In a sense, roles are seen both as objects, from the internal point of view of
the institution they belong to, and as agents, from the point of view of their
players, with beliefs and goals, but not autonomous. Their behavior is simply
to:

– Receive the messages of their players.

– Execute the requests of their player of performing the interaction moves
according to the protocol allowed by the institution in that role.

– Send a message to their players when the interaction move performed by the
role itself or by some other role results in a change of state of the role.



3 A Logical Model for Roles

In [5] the model is structured in three main levels: universal, individual and
dynamic; here we decide not to talk about the universal level an concentrate
ourself on agents dynamics. We define the formalism of the framework in a way
as much general as possible, this gives us an unconstrained model where special
constraints are added later.

3.1 Individual level

The individual level includes in this paper some elements of the universal one
and the elements of this level are individuals (or instances) of the types defined
at the universal level. This level is composed by a snapshot model that describes
in a particular moment the relationships between individual players contexts and
roles, and a dynamic model which links snapshots and actions modeling how the
system changes when an action is executed. In the formalization of the model we
use objects as basic elements upon which the model is based; we refer to Section
4 for a complete discussion that underlines how the model can be used to grasp
roles dynamics in MAS.

Definition 1 A snapshot model is a tuple

< O, R types, I contexts, I players, I roles, Val, I contraints
IRoles, I Attributes, I Operations, IAttr >

where:

– O is a domain of objects, for each object o is possible to refer to its attributes
and operations through πI Attr(o) and πI Op(o), respectively.

– R types is a set of types of roles.
– I contexts ⊆ O is a set of institutions.
– I players ⊆ O is a set of actors.
– I roles ⊂ O is a set of roles instances.
– I Attributes is the set of attributes.
– I Operations is the set of operations.
– Val is a set of values.
– I constraints is a set of integrity rules that constraint elements in the snap-

shot.

We usually refer elements in I contexts, I players and I roles respectively, insti-
tutions, actors and roles instances.
The snapshot model has also a few functions and relations:

– IRoles is a role assignment function that assigns to each role R a relation on
I context x I players x I roles.

– IAttr is an assignment function which it takes as arguments an object d ∈ O,
and an attribute p ∈ πI Attr(d), if p has a value v ∈ Val it returns it, ∅
otherwise.



– I AS ⊆ O x I Attributes: is an attribute assignment relationship, through
which we define what are the attributes assigned to an object in the defined
snapshot.

– I OS ⊆ O x I Operations: is an operations assignment relationship, through
which we define what are the operations assigned to an object in the defined
snapshot.

– I OT ⊆ O x R types: is an type assignment relationship, through which we
define the type of every role instance in the snapshot.

– I PL ⊆ I players x R types: this relation states, which are the players that
can play a certain role types.

– I RO ⊆ I roles x I contexts: each role is linked with one or (potentially more)
context.

Generally, when a role instance x is an individual of the type D, we write
x :: D. If a ∈ πI Attr(x) we write x.a ∈ I Attributes as the attribute instance
assigned to object x, the same holds for elements in I Operations.

The role assignment function IRoles gives us the notion of an actor who plays
a role within a specific context: if i is an institution, a an actor, and o :: R a
role, (i,a,o)∈ IRoles(R) is to be read as: “the object o represents agent a playing
the role R in institution i”. We will often write R(i,a,o) for this statement, and
we call o the role instance.

Suppose we have a role instance employee, and that the value of the attribute
salary is 1000 e usually, instead of writing IAttr(employee, salary) = 1000, we
write

salary(employee) = 1000

3.2 The dynamic model

The dynamic model relies on the individual level and defines a structure to
properly describe how the framework evolves as a consequence of executing an
action on a snapshot. In Section 4 and 5, we describe how this model constraints
agents’ dynamics.

Definition 2 A dynamic model is a tuple

< S, TM, Actions, Requirements, D constraints, IActions, IRolest
πReq, IRequirementst

>

where:

– S is a set of snapshots.
– TM ⊆ S x IN: it is a time assignment relationship, such that each snapshot

has an associated unique time t. For the sake of simplicity we define a discrete
time through positive natural numbers.

– Actions is a set of actions.
– Requirements is a set of requirements for playing roles in the dynamic model.
– D contraints is a set of integrity rules that constraints the dynamic model.



– IActions maps each action from Actions to a relation on a set of snapshots P.
IActions(s, a, t) tells us which snapshots are the result of executing action a

at time t from a certain snapshop. 1 This function returns a couple in TM
that binds the resulting snapshot with time t+1. In general, to express that
at time t is carried action a we write at.

– About IRolest
we say that Rt(i, a, o) is true if there exists, at a time t, the

role instance R(i, a, o).
– πReq(t, R) returns a subset of Requirements present at a given time t for the

role of type R, which are the requirements that must be fulfilled in order to
play roles of type R.

– IRequirementst
is a function that, given (i,a,R,t) returns True if the actor a

fills the requirement in πReq(t, R) to play the role R in the institution i, False
otherwise. We often write Reqt(i, a, R).

Intuitively, the snapshots in S represent the state of a system at a certain time.
Looking at IActions is possible to identify the course of actions as an ordered
sequence of actions such that:

a1; b2; c3

represents a system that evolves due to the execution of a, b and c at consecutive
times. We refer to a particular snapshot using the time t as a reference, so that
for instance πI Attrt

refers to πI Attr in the snapshot associated with t in TM.
Actions are described using dynamic modal logic [8], in paricular they are

modelled through precondition laws and action laws of the following form:

2(A ∧B ∧ C ⊃ 〈d〉⊤) (1)

2(A
′

∧B
′

∧ C
′

⊃ [d]E) (2)

Where the 2 operator express that the quantified formulas hold in all the possible
words. Precondition law (1) specifies the conditions A,B and C that make an
atomic action d executable in a state. (2) is an action law2 which states that if
preconditions A

′

,B
′

and C
′

to action d holds, after the execution of d also E

holds.
In addition we introduce complex actions which specify complex behaviors

by means of procedure definitions, built upon other actions. Formally a complex
action has the following form:

〈p0〉ϕ ⊂ 〈p1; p2....; pm〉ϕ

p0 is a procedure name, “;” is the sequencing operator of dynamic logic, and
the pi’s, i ∈ [1, m], are procedure names, atomic actions, or test actions3.

1 Notice that given an action, we can have several snapshots because we model ac-
tions with modal logic in which, from a world it is possible to go to more than
one other possible world. This property is often formalized through the accessibility

relationship. Thus, each snapshot can be seen as a possible world in modal logic.
2 Sometimes action laws are called effect rules because E can be considered the effect

of the execution of d.
3 Test actions are of the form 〈ψ?〉ϕ ≡ ψ ∧ ϕ.



Now we show some examples of actions that can be introduced in the dynamic
model in order to specialize the model.

Role addition and deletion

For role addition and deletion actions we use, respectively R, i →֒t a, and
R, i ←֓ t a. Then using the notation of dynamic logic introduced above, we
write:

2(Reqt(i, a, R) ⊃ 〈R, i →֒t a〉⊤)

to express that, if actor a fills the requirements at time t (Reqt(i, a, R) is True),
a can execute the role addition action that let him play role of type R.

The above definition gives us the possibility to model that a role assignment
introduces a role instance:

2(⊤ ⊃ [R, i →֒t a]∃xRt+1(i, a, x))

or the fact that if a does not already play the role R within institution i, then
the role assignment introduces exactly one role instance:

2(¬∃xR(i, a, x) ⊃ [R, i →֒t a]∃!xRt+1(i, a, x))

Methods

There are other actions through which is possible to change the model as
well, for instance agents may assign new values to their attributes [5]. Again,
the effects of such changes may depend on choices made earlier (e.g. in the case
of delegation, changing the attribute value of an object may change the value of
that attribute also in some roles he plays).

Here, we will focus on the case in which the attribute’s values can be changed
by the objects themselves. What we will do is to define methods of objects with
which they can change attributes of their own or those of others. Actually, to sim-
plify the model, we define one single primitive action: sett(o1, o2, attr, v), which
means that object o1 sets the value of attr on object o2 to v at time t. If o1

and o2 are autonomous agents, the set(o1, o2, attr, v) can be executed only when
o1 = o2.

Now, we will of course have that:

2(⊤ ⊃ [sett(o1, o2, attr, v)]attrt+1(o2) = v)

which means that in any state, after the execution of set, if the action of setting
this attribute succeeds, then the relevant object will indeed have this value for
that attribute.



Operations

Elements of our framework come with operations that can be executed at
the individual level in order to change the model dynamically, the semantics
of each operations can be given exploiting the actions defined for the dynamic
model. Suppose, for instance, to have an object individual x :: Person with
x.mail address attribute, and an operation x.change mail that changes the value
of x.mail address to its argument. Using the set primitive is possible to define
how the model evolves after the execution of x.change mail operation trough the
following axiom:

[x.change mailt(s)]ϕ ≡ [sett(x, x, mail adress, s)]ϕ

Where x.change mailt(s) identifies the action carried by x at time t to execute
the instance operation x.change mail; objects can execute only operations that
are assigned to them by I OS relation. In Section 5 we define exec of certain
operations as complex actions because we have to describe a more complex
semantics.

4 Roles in Multiagent Systems

Since here we have been talking about objects as cornerstone of the individual
level, now in order to switch from objects to agents, it must be underlined that
an object of the meta-model does not necessarily overlap with object in OO
programming. We used the terms object to refer to individuals, and terms like
attribute and operation to talk about state and bheavior of an entity.

In order to be as much general as possible, we define elements of the meta-
model with only those features that are essential to talk about roles and leave
the possibility to specify the abstract model depending on which account of role
we want to grasp. This approach gives us the possibility to talk about object
and agent using the same framework, and specifing each time which are the
charateristics of role’s player. In moving from objects to agents we need to state
the following:

– Attributes are complex properties of the agent which describe its internal
features as well as its mental attitudes (belief, goals, plans etc.).

– Operations are actions that the agent does in the system.
– Agents at individual level are supposed to be autonomous so they cannot be

forced to execute an action from an external entity.
– The only way to interact between agents is through message passing.
– The system in which agents interacts is represented by a unique institution.
– Role instances are linked with one and only one system. In order to express

this point we add into I Constraint of every snapshot the following integrity
rule:

r ∈ I roles↔ ∃!c ∈ I contexts :< r, c >∈ I RO



For the sake of generality, we prefer not to specify how agents reason on the
basis of their mental attitudes; what we want to model is how mental attitudes
evolve as a consequence of playing a role and what are the elements on which
the agent have to carry out its resoning process.

It is important to understand that the meta-model is not a framework for
agent specification, the elements listed above are the basic features that we think
are foundamental to talk about role in MAS, but of course they are not sufficient
to utterly model agents.

5 Enact and Deact Roles

In [2], the problem of formally defining the dynamics of roles, is tackled identifing
the actions that can be done in a open system such that agents can enter and
leave. In this setting roles have existence outside the agents in the implemented
system, so “agents are not completely defined by the roles they play”[2]. This
view leads to a definition of roles that sees them as strictly linked with a system
(context), instantiable and with their own proper identity.

In [2] four operations to deal with role dynamics are defined: enact and deact,
which mean that an agent starts and finishes to occupy (play) a role in a system,
and activate and deactivate, which means that an agent starts executing actions
(operations) belonging to the role and suspends the execution of the actions.

Although is possible to have an agent with multiple roles enacted simultane-
ously, only one role can be active at the same time.

Before diving into modeling the four basic operations to deal with roles, we
need to match with our framework a few concept defined in [2], following we
report a list of elements together with their definition and then how they fit in
our meta-model:

– Multiagent system: In [2] roles are taken into account at the implementation
level of open MAS, they belong to the system which can be entered or left
by agents dynamically. In our framework is possible to view a system as a
context to which are linked all roles that can be played by the agents.

– Agent role: A role is a tuple 〈σ, γ, ω〉. Where σ are beliefs, γ goals and ω

rules representing conditional norms and obligations. This definition specifies
a role “in terms of the information that becomes available to agents when
they enact the role, the objectives or responabilities that the enacting agent
should achieve or satisfy, and normative rules which can for example be used
to handle these objectives” [2]. With this view we define, for roles of our
framework, a set of complex attributes {beliefs, goals, plans, rules} ∈ I Attr
toghether with the operations that represent actions that an agent can carry
out when it activates the roles instance chosing it from the set of roles it is
playing.

– Agent type: We consider an agent type “as a set of agent roles with certain
constraints and assume that an agent of a certain type decides itself to enact
or deact a role”. To talk about agent types we use classes introduced in the
framework as a specification of agent instances at the individual level, with



this in mind we use the PL relationship to link agent classes to agent roles
(role’s classes) so that the set of roles that an agent can enact (play), is
constrainted by I PL.

– Role enacting agent : “We assume that role enacting agents have their own
mental attitudes consisting of beliefs, goals, plans, and rules that may specify
their conditional mental attitudes as well as how to modify their mental
attitudes. Therefore, role enacting agents have distinct objectives and rules
associated to the active role it is enacting, and sets of distinct objectives
and rules adopted from enacted but inactive roles”. In our framework we
define a role enacting agent as a instance x having a set of attributes A that
represent the internal structures used to deliberate.

A = {beliefsa, objectivesa, plansa, rulesa, enacted roles[], active role} ∈ πI Attr(x)

The enacted roles attribute is a role ordered record where each entry with
index i corresponds to a triple 〈σi, γi, ωi〉 which represents the set of beliefs,
objectives, plans and rules associated to roles instance i enacted by x.

As introduced above, the model in [2] identifies four operations to deal with
role dynamics, in order to to grasp the foundamental ideas proposed in the cited
paper, we redefine the enact, deact, activate and deactivate operations respecting
their original meaning. Given a role enacting agent x, a role instance i :: R played
by x in context c such that,

{beliefsr, objectivesr, plansr, rulesr} ∈ πI Attr(i)
{beliefsa, objectivesa, plansa, rulesa, enacted roles[], active role} ∈SA πI Attr(x)

{enact, deact, activate, deactivate} ∈ πI Op(x)

Next we report the semantics of each operation exploiting the set primitive:

〈x.enactt(i)〉ϕ ⊂ 〈R, s →֒ x; sett(x, x, beliefsa, beliefsa ∪ beliefsr);

sett(x, x, enacted roles[i], < objectivesr, plansr, rulesr >)〉ϕ
(3)

〈x.deactt(i)〉ϕ ⊂ 〈R, s ←֓ x; sett(x, x, enacted roles[i], null)〉ϕ (4)

〈x.activatet(i)〉ϕ ⊂ 〈sett(x, x, active role, enacted roles[i])〉ϕ (5)

〈x.deactivatet(i)〉ϕ ⊂ 〈sett(x, x, active role, null)〉ϕ (6)

In order to be coherent it must be respected a logical order in the execution
of these operations, as in [2]:

– each operation deact(i) is preceded by a enact(i).

– each operation deactivate(i) is preceded by only one instruction activate(i)
that is not preceded by another activate(j).



6 The public dimension of roles

In [9] roles are introduced inside institutions to model the interaction among
agents. In [1] the model is specifically used to provide a semantics for agent
communication languages in terms of public mental attitudes attributed to roles.

The basic ideas of the model are:

– Roles are instances with associated beliefs and goals attributed to them.
These mental attitudes are public.

– The public beliefs and goals attributed to roles are changed by speech acts
executed either by the role or by other roles. The former case accounts for the
addition of preconditions and of the intention to achieve the rational effect
of a speech act, the latter one for the case of commands or other speech acts
presupposing a hierarchy of authority among roles.

– The agents execute speech acts via their roles.

This model has been applied to provide a semantics to both FIPA and Social
Commitment approaches to agent communication languages [1]. This semantics
overcomes the problem of the unverifiability of private mental attitudes of agents.

– In order to maintain the model simple enough, we model message passing
extending the dynamic model with two actions (methods) send(x,y,sp) and
receive(y,x,sp). Where send(x,y,sp) should be read as the action carried by x of
sending a speech act (sp) to y and receive(y,x,sp) is the complementary action
of y receiving the message from x. It must be underlined that arguments x
and y can be agents or roles.

– A role only listens for the messages sent by the agents playing it:

〈listen(r)〉ϕ ⊂ 〈P; played by(r, x)?; receive(r, x, sp); D〉ϕ

These rules define a pattern of protocol where P and D have to be read
as possible other actions that can be executed before and after the receive.

– The reception of a message from the agent has the effect of changing the
state of other roles. For example, a command given via a role amounts to
the creation of a goal on the receiver if the sender has authority (within the
system) over it.

2(authoritysys(r, request ⊃ [receive(r, x, request(r, r
′

, act)))]Gr
′

t (act))4

– To produce a speech act, the agent has to send a message to the role speci-
fying the illocutive force, the receiver and the content of the speech act:

〈communicate(a)〉ϕ ⊂ 〈P; send(x, r, sp); D〉ϕ

4
request(r, r

′

, act) is a speech act that has to be read as following: role r asks to r
′

’s
player to do act.
authoritysys(r, request) expresses that role r has the authority to make a request

within system sys.



7 The combined model

The two models presented above model complementary aspects of roles: the
public character of roles in communication and how agents privately adapt their
mental attitudes to the roles they play.

In this section we try to merge the two approaches using the metamodel we
presented. On the one hand, the model of [1] is extended from the public side
to the private side, by using [2] as a model of role enacting. In this way, the
expectations described by the roles resulting from the interaction among agents
can become a behavior of agents and they do not remain only a description.

On the other hand, the model of [2] is made more dynamic. In the origi-
nal model the role is given as a fixed structure. The goals of agent can evolve
according to the goal generation rules contained in it, but the beliefs and goals
described by the role cannot change. This is unrealistic, since during the activity
of the agent enacting its role, it is possible that further information are put at
disposal of the role and that new responsibilities are assigned, etc.

This problem can be solved by the merging with the model of [1] and by the
addition of a further element, which is anyway necessary in [1]’s model.

First of all, in [2] roles cannot change since they are not related to a more
extensive context. Instead, in [1], roles belong to institutions together with other
roles. Sibling roles and the institution they belong to are the sources of changes
for the role. Second, in [1], the changes of roles are described by the effects of
the speech acts which can be performed via roles. These two elements can be
added to [2]’s model without apparent contradictions.

The missing element is that both models do not consider the problem of how
the player of a role become aware of the changes in the state of the played role
as a consequence of the actions of other roles. Furthermore, in [2] a role is given
as known by the agent playing the role. This is not a realistic assumption, in
particular, when the state of the role changes over time, but also the way an
agent comes to know the initial state of the role must be explicitly modeled.
Otherwise, all roles instances must be assumed to be publicly known in advance.

In order to merge the two models within the same framework, we need to add
(complex) actions which are able to grasp the dynamics introduced in [1] and [2].
Interactions among agents is done through message passing and, in particular,
through actions send and receive introduced in section 6. Next we are going to
introduce all the speech-acts and complex actions which are needed to grasp the
combined model and then we introduce a running example to clarify their use
defining a course of actions in the dynamic model defined in section 3.2.

An agent who wants to play a role within an open system has to ask to the sys-
tem for a role instance; this process is handled by two speech act: ask to play(R)
and accept to play(r,A), where the first one is sent from the agent to the system
in order to ask to play a role of type R, whereas the second is sent from the
system to the agent, together with the identifier of the role instance r and a set
A of other role instances present in the system, in order to inform the agent with



which roles is possible to interact. Next we report the two effect rules associated:

2(⊤ ⊃ [receive(s, x, ask to play(R); send(s, x, accept to play(r, A)]

played bysys(r, x, s)
(7)

2(⊤ ⊃ [send(x, s, ask to play(R); receive(x, s, accept to play(r, A)]

played byag(r, x, s))
(8)

Where s is the system, x the agent, and r a role instance of type R. In this
section we use x,y,z. . . to denote agents, s for the system and r, r

′

, r
′′

. . . for role
instances. Notice that played bysys(r, x, s) and played byag(r, x, s) refer to two dif-
ferent infrastructures; in Rule 7 is the system that, after having acknowledged
the agent request, knows that x is going to play r, whereas in Rule 8 is the
agent that becomes aware of the play relation between x and r. To link the two
predicates with the logical model introduced in Section 3 we have that:

played bysys(r, x, s) ∧ played byag(r, x, s)→ R(s, x, r)

When we are dealing with a single system we can omit s writing played bysys(r, x)
and played byag(r, x).

To enact a role, an agent, provided the identifier of the role instance it wants
to enact, has to send a message to the role and to wait till the role replies with
the information about the state of the role: its beliefs, goal, plans, etc. When
the state is received, the agent can enact the role in the same way described
by Rule 3 in Section 5. In order to model such interaction we introduce two
complex actions tell enact, accept enact and two speech acts accept enact and
inform enact. Following the specification of the complex actions:

〈tell enact(x, r)〉ϕ ⊂ 〈played byag(r, x)?; (send(a1, r1, enact(x, r))〉ϕ (9)

〈accept enactment(r, x)〉ϕ ⊂ 〈receive(r, x, enact(x, r)); played bysys(r, x)?;

send(r, x, inform enact(< beliefsr, objectivesr, plansr, rulesr >))〉ϕ
(10)

When the agent receives the specification of the role he wishes to enact, it can
internalize them as in Rule 3:

2(⊤ ⊃ [receive(x, r, inform enact(< beliefsr, objectivesr, plansr, rulesr >))]

Bx(beliefsr) ∧ x.enacted roles[r] =< objectivesr, plansr, rulesr >)5
(11)

In this combined view is possible that role’s specifications change dynami-
cally, in that case it is up to the role to send a message to its player each time
its state is updated:

〈udpate state(r, x)〉ϕ ⊂ 〈played bysys(r, x)?; (¬G
r
t(q) ∧Gr

t+1(q))?;

send(r, x, inform goal(q))〉ϕ
(12)

Last but not least, we need to model the deactment of a role respecting the
formalization as in Rule 4, therefore we introduce two speech acts deact, ok deact



and a complex action confirm deact defined as follows:

〈confirm deact(r, x)〉ϕ ⊂ 〈receive(r, x, deact); played bysys(r, x)?;

send(r, x, ok deact)〉ϕ
(13)

After sending the ok deact, the system will not consider anymore agent x as
player of r:

2(⊤ ⊃ [confirm deact(r, x)]¬played bysys(r, x) (14)

If it is possible for the agent to deact the role, it will receive an ok deact from
its role:

2(⊤ ⊃ [receive(x, r, ok deact)]x.enacted roles[r] = null ∧ ¬played byag(r, x)) (15)
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Fig. 1. Roles in MAS

Fig. 1 depicts two agents which interact through roles in an open system. At
time t the system has already agent B that enacts role r2 as represented by the
black arrow which goes from agent B to r2. The system evolves as following:

– At time t+1 agent A asks to institution system C to play a role of type R1:

sendt+1(agent A, system C, ask to play(R1))

– At time t+2 system C replies to agent A assigning to him the role instance
r1:

sendt+2(system C, agent A, accept to play(r1, {r2}))

– At time t+3 agent A wants to enact (internalize) role r1:

tell enactt+3(agent A, r1)



– At time t+4 role r1 receives the speech act from agent A asking for enactment
and accepts it, replying to agent A with its specifications:

accept enactmentt+4(r1, agent A)

– Once that agent A has enacted the role as in Rule 3 it decides, at time t+5,
to activate it 6 and then to ask to the agent playing r2 to do an action act.
In other words:

sendt+5(agent A, r1, request(r1, r2, act))

When r1 receives a send from agent A asking for an act of r2, first it checks
if the sender has the authority in the system to ask such an act, if so r2
acquires the goal to do act:

2(authoritysys(r
′

, act) ⊃ [receive(r, agent A, request(r, r
′

, act))]Gr
′

(act))

Is important to underline that because role internals are public to other roles
in the same system, it is always possible for r1 to check or modify r2’s goals.
So, at time t+6 we have:

receivet+6(r1, agent A, request(r1, r2, act))

– Now that r2 has updated its internal state (i.e. its goals) it must inform its
player agent B:

update statet+7(r2, agent B)

Where update state is modelled as in Rule 12
– At time t+8 agent A decides to deact the role r1:

sendt+8(agent A, r1, deact)

– Finally, at time t+9, r1 confirm the deact:

confirm deactt+9(r1, agent A)

8 Conclusions and Further Works

In this article we merged two represetative role’s models in MAS by introducing
a metamodel taken from [5] and adapting it to agents. In particular, we added
representations of typical agents’ mental attitudes and a framework to deal with
message passing. The model has been specialized in order to describe both public
and private dimensions of roles [1,2]. Finally, we merged the two dimensions
defining a group of actions together with their semantics and we modelled a
running example to show a possible course of events.

Further works point in two main directions: adapting the proposed meta-
model to other roles approaches like [10], and introducing a formal proof theory
of roles’ actions dynamics and related apects starting from [8].

6 Activating a role means to take into account its specification during the private agent
deliberation process, so there is no need to introduce a public action in the dynamic
model to represent the activation of a role.
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